数据分析-python学习 (1)numpy相关
内容为:https://juejin.cn/book/7240731597035864121的学习笔记
导包
import numpy as np
numpy数组创建
- 创建全0数组,正态分布、随机数组等就不说了,提供了相应的方法
- 通过已有数据创建有两种 arr1=np.array([1,2,3,4,5]) 或者data=np.loadtxt(‘C:/Users/000001_all.csv’,dtype=‘float’,delimiter=‘,’,skiprows=1) (data=np.genfromtxt(‘C:/Users/000001_all.csv’,dtype=‘float32’,delimiter=‘,’,skip_header=1) )
- 注意浅拷贝与深拷贝
arraycopy是深,asarray是浅
import numpy as np
arr1=np.array([1,2,3,4,5])
arr2=np.array(arr1)
arr3=np.asarray(arr1)
arr4=np.copy(arr1)
arr1[0]=100
print('更改后arr2为:',arr2)
print('更改后arr3为:',arr3)
print('更改后arr4为:',arr4)更改后arr2为: [1 2 3 4 5]
更改后arr3为: [100 2 3 4 5]
更改后arr4为: [1 2 3 4 5]
- 数组的切片也是浅拷贝
Score=np.array([69,80,90,40,60,20,90,94,90,99])#学生的成绩Score[:3]=0print('修改切片对象成绩后的Score为',Score)Score1=[69,80,90,40,60,20,90,94,90,99]Score1_list=Score1[:3]Score1_list=0print('修改Score1_list后的Score1为',Score1)修改切片对象成绩后的Score为 [ 0 0 0 40 60 20 90 94 90 99]
修改Score1_list后的Score1为 [69, 80, 90, 40, 60, 20, 90, 94, 90, 99]
索引的访问
访问某个下标(一个元素)得到的也是一个数值;如果访问的是多个下标,得到的是一个数组
一维

二维
Score2=np.array([[69,40,30],[80,90,40],[90,100,50],[40,20,99],[60,60,66],[20,66,44],[90,88,56],[94,99,67],[90,20,70],[99,50,86]])print('学号为1的同学的语文和英语成绩为',Score2[[0,0],[0,2]])
学号为 1 的同学的语文和英语成绩为 [69 30]

三维
Space=np.array([[[5,4,8],[5,9,2],[4,5,3]],[[4,9,6],[2,2,5],[4,3,4]],[[4,2,1],[7,6,3],[4,6,5]]])print(Space[[0,0,1],[0,1,2],[0,0,2]])[5 5 4]

数组的运算
广播
3种
广播机制的原则是如果两个数组的从后数第一个维度轴长度相符或其中一个数组的轴长为 1,则认为它们能够广播
- 一
Arr1=np.array([1,2,3])
print(Arr1)
print(Arr1*3)[1 2 3]
[3 6 9]
- 二
Arr2=np.array([[1,2,3],[4,5,6]])
Arr1=np.array([1,2,3])
print(Arr1)
print(Arr2)
print(Arr1+Arr2)[1 2 3]
**********
[[1 2 3][4 5 6]]
**********
[[2 4 6][5 7 9]]
- 三
Arr2=np.array([[1,2,3],[4,5,6]])
Arr=np.array([[1],[2]])
print(Arr2)
print(Arr)
print(Arr2+Arr)[[1 2 3][4 5 6]]
**********
[[1][2]]
**********
[[2 3 4][6 7 8]]
数值与数组的标量运算,就用到了广播机制,会把数据扩充到跟待运算一样的大小,按位相加/减/乘/除
计算函数
除了可以arr1与arr2直接相运算,如arr1*arr2,也有相应的方法
方法:add() 加法函数,subtract() 减法函数,multiply() 乘法函数,divide() 除法函数,mod() 取余函数。
Score_F=np.array([69,80,90,40,60,20,90,94,90,99])#第一次成绩
Score_S=np.array([70,92,63,20,50,96,33,44,55,30])#第二次成绩
Score_chaju=np.subtract(Score_F,Score_S)
print('求两次成绩的和',np.add(Score_F,Score_S))
print('第一次成绩的0.6加第二次成绩的0.4',np.add(np.multiply(Score_F,0.6),np.multiply(Score_S,0.4)))
print('查看两次成绩的差距,差距以正数显示',np.abs(Score_chaju))
统计函数
axis有两个值,为0求的是纵向的聚合值,为1求的是横向的聚合值,
常用的聚合函数如下:mean,sum,max,min,std,var
标准差是方差的算数平方根(标准差和原数据单位相同,方差多个平方),所以方差>标准差,说明偏差大;方差<标准差,说明偏差小


逻辑运算
提供了all、any 和 where 这三个方法

# 得到两门成绩都及格的同学的成绩
import numpy as np
Score=np.array([[98,89],[64,90],[60,56],[92,78],[32,45],[48,30]])
Score60=Score>60
Score_bool=np.all(Score60,axis=1)
print(Score_bool)
print(Score[Score_bool])[ True True False True False False]
[[98 89][64 90][92 78]]#查看数学或者语文超过 90 分同学的成绩
Score90=Score>90
Score_bool=np.any(Score90,axis=1)
print(Score_bool)
print(Score[Score_bool])[ True False False True False False]
[[98 89][92 78]]# 成绩大于60的分数有哪些
import numpy as np
Score_math=np.array([98,64,60,92,32,48])
score60_index = np.where(Score_math>60)
score60 = Score_math[score60_index]
print(score60_index)
print(score60)(array([0, 1, 3]),)
[98 64 92]
矩阵运算
可以用@或dot来实现,它俩是等价的
注意是(3, 2)*(2, 4)=(3, 4) 只有
fruit_price=np.array([[5,4,3]]) # 1*3
jinshu=np.array([[2],[3],[1]]) # 3*1
print('水果的总价格为:\n',fruit_price@jinshu) #得到的是1*1的矩阵
print('水果的总价格为:\n',np.dot(fruit_price,jinshu))水果的总价格为:[[25]]
水果的总价格为:[[25]]
数组的拆分与合并
合并
水平可以用concatenate 方法、hstack 方法和 column_stack 方法
垂直可以用concatenate 方法、vstack 方法和 row_stack 方法
- 水平
import numpy as np
Stock1=np.array([[14.322,14.552],[14.472,14.532],[14.592,15.022],[14.852,14.802]])
Stock2=np.array([[14.652,14.192],[14.832,14.422],[15.022,14.592],[15.152,14.722]])
# 方式1
Stock=np.concatenate((Stock1,Stock2),axis=1)
# 方式2
Stock=np.hstack((Stock1,Stock2))
# 方式3
Stock=np.column_stack((Stock1,Stock2)) print(Stock)#上面3种得到的结果一样,写一块了[[14.322 14.552 14.652 14.192][14.472 14.532 14.832 14.422][14.592 15.022 15.022 14.592][14.852 14.802 15.152 14.722]]

- 垂直
import numpy as np
Stock1=np.array([[14.322,14.552],[14.472,14.532],[14.592,15.022],[14.852,14.802]])
Stock2=np.array([[14.912,14.932],[14.772,14.602]])
Stock=np.concatenate((Stock1,Stock2),axis=0)
Stock=np.vstack((Stock1,Stock2))
Stock=np.row_stack((Stock1,Stock2))
print(Stock)[[14.322 14.552][14.472 14.532][14.592 15.022][14.852 14.802][14.912 14.932][14.772 14.602]]

分割
# 水平
import numpy as np
Stock=np.array([[14.322,14.552],[14.472,14.532],[14.592,15.022],[14.852,14.802],[14.912,14.932],[14.772,14.602]])
open,close=np.split(Stock,2,axis=1)
print('open为{},close为{}'.format(open,close))open为[[14.322][14.472][14.592][14.852][14.912][14.772]],close为[[14.552][14.532][15.022][14.802][14.932][14.602]]# 垂直
# 这里面对行下标做切分,包含头不包含尾如按[1,3,4]: 0, 1,2, 3, 4,5
import numpy as np
Stock=np.array([[14.322,14.552],[14.472,14.532],[14.592,15.022],[14.852,14.802],[14.912,14.932],[14.772,14.602]])
arr1,arr2,arr3,arr4=np.split(Stock,[1,3,4],axis=0)
print('arr1为{},arr2为{},arr3为{},arr4为{}'.format(arr1,arr2,arr3,arr4))arr1为[[14.322 14.552]],arr2为[[14.472 14.532][14.592 15.022]],arr3为[[14.852 14.802]],arr4为[[14.912 14.932][14.772 14.602]]
综合案例:
https://juejin.cn/book/7240731597035864121/section/7255506664244117559
相关文章:
数据分析-python学习 (1)numpy相关
内容为:https://juejin.cn/book/7240731597035864121的学习笔记 导包 import numpy as np numpy数组创建 创建全0数组,正态分布、随机数组等就不说了,提供了相应的方法通过已有数据创建有两种 arr1np.array([1,2,3,4,5]) 或者datanp.loadt…...
数据库的游标
数据库的游标(Cursor)是用于在数据库中进行数据操作的一个控制结构。它类似于在编程语言中使用的指针或迭代器,用于遍历数据库结果集并在结果集上执行各种操作。 游标允许我们在数据库查询的结果集中逐行移动,并对每一行执行特定…...
【设计模式】前端控制器模式
前端控制器模式(Front Controller Pattern)是用来提供一个集中的请求处理机制,所有的请求都将由一个单一的处理程序处理。该处理程序可以做认证/授权/记录日志,或者跟踪请求,然后把请求传给相应的处理程序。以下是这种…...
SQL | 过滤数据
4-过滤数据 4.1-使用WHERE子句 数据根据 WHERE 子句中指定的搜索条件进行过滤。WHERE 子句在表名( FROM 子句)之后给出。 select prod_name,prod_price from products where prod_price 3.49; 上述语句查询价格为3.49的行,然后输出名字和…...
【力扣每日一题】2023.8.13 合并两个有序数组
目录 题目: 示例: 分析: 代码: 题目: 示例: 分析: 题目给我们两个升序数组,让我们合并它们,要求合并之后仍然是升序,并且这个合并操作是在数组1原地修改…...
数据结构篇七:排序
文章目录 前言1.插入排序1.1 基本思想1.2 代码实现1.3 特性总结 2.希尔排序2.1 基本思想2.2 代码实现2.3 特性总结 3. 选择排序3.1 基本思想3.2 代码实现3.3 特性总结 4. 堆排序4.1 基本思想4.2 代码实现4.3 特性总结 5. 冒泡排序5.1 基本思想5.2 代码实现5.3 特性总结 6. 快速…...
Vue组件的边界情况
01.$root; 访问组件的根实例;用的不多,基本上在vuex上进行数据操作; 02.$parent/$children; 可以获得父组件或者子组件上边的数据;一般不建议使用$parent,因为如果获取这个值进行修改的话,也会更改父组件上…...
less、sass的使用及其区别
CSS预处理器 CSS 预处理器是一种扩展了原生 CSS 的工具,它们添加了一些编程语言的特性,以便更有效地编写、组织和维护样式代码。预处理器允许开发者使用变量、嵌套、函数、混合等功能,从而使 CSS 更具可读性、可维护性和重用性,特…...
[保研/考研机试] 猫狗收容所 C++实现
题目描述: 输入: 第一个是n,它代表操作序列的次数。接下来是n行,每行有两个值m和t,分别代表题目中操作的两个元素。 输出: 按顺序输出收养动物的序列,编号之间以空格间隔。 源代码ÿ…...
Kotlin 基础教程一
Kotlin 基本数据类型 Java | Kotlin byte Byte short Short int Int long Long float Float double Double boolean Boolean c…...
数据结构笔记--前缀树的实现
1--前缀树的实现 前缀树的每一个节点拥有三个成员变量,pass表示有多少个字符串经过该节点,end表示有多少个字符串以该节点结尾,nexts表示该字符串可以走向哪些节点; #include <iostream> #include <unordered_map>str…...
C/C++时间获取函数
time.h包含C/C中用于获取时间,和时间转换方面的函数。 1、time() 函数 time_t time(time_t *seconds) 返回自(1970-01-01 00:00:00 UTC)起经过的时间,以秒为单位。如果 seconds 不为空,则返回值也存储在变量 seconds …...
sql中判断日期是否是同一天
sql中判断日期是否是同一天的sql sql: select id,product_id,seckill_price,stock_count,time,intergral,start_date from t_seckill_product where to_days(start_date) to_days(now()) to_days函数: 使用to_days(start_date) to_days(now())的方式是一种常见的…...
NAS搭建指南一——服务器的选择与搭建
一、服务器的选择 有自己的本地的公网 IP 的请跳过此篇文章按需求选择一个云服务器,目的就是为了进行 frp 的搭建,完成内网穿透我选择的是腾讯云服务器,我的配置如下,仅供参考: 4. 腾讯云服务器官网地址 二、服务器…...
豪越HYDO智能运维助力智慧医院信息化建设
随着国家政策的推动与支持,医疗行业信息化应用不断普及,大数据、AI、医疗物联网等技术的应用,快速推动了电子病历、智慧服务、智慧管理的智慧医院建设和医院信息标准化建设,通过不断探索创新“智慧医院”服务模式,实现…...
Week1题目重刷
今天把week1的题目都重新刷了一遍,明天开始week2的内容~ 704.二分查找 class Solution {public int search(int[] nums, int target) {int l 0, r nums.length - 1, m;while (l < r) {m (l r) >>> 1;if (nums[m] < target) {l m 1;} else if…...
考研数据结构:第七章 查找
文章目录 一、查找的基本概念二、顺序查找和折半查找2.1顺序查找2.3折半查找2.3.1算法思想2.3.2代码实现2.3.3查找效率分析2.3.4折半查找判定树的构造2.3.5折半查找效率2.3.6小结 2.4分块查找 三、树形查找3.1二叉排序树3.1.1二叉排序树定义3.1.2查找操作3.1.3插入操作3.1.4二叉…...
【Linux进程篇】环境变量
【Linux进程篇】环境变量 目录 【Linux进程篇】环境变量基本概念常见环境变量查看环境变量方法测试PATH测试HOME测试SHELL和环境变量相关的命令环境变量的组织方式通过代码如何获取环境变量命令行参数命令行第三个参数通过第三方变量environ获取 本地变量通过系统调用获取或设置…...
【软件测试】Linux环境下Docker搭建+Docker搭建MySQL服务(详细)
目录:导读 前言 一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 Linux之docker搭…...
去了字节跳动,才知道年薪40W的测试有这么多?
今年大环境不好,内卷的厉害,薪资待遇好的工作机会更是难得。最近脉脉职言区有一条讨论火了: 哪家互联网公司薪资最‘厉害’? 下面的评论多为字节跳动,还炸出了很多年薪40W的测试工程师 我只想问一句,现在的…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...
数据挖掘是什么?数据挖掘技术有哪些?
目录 一、数据挖掘是什么 二、常见的数据挖掘技术 1. 关联规则挖掘 2. 分类算法 3. 聚类分析 4. 回归分析 三、数据挖掘的应用领域 1. 商业领域 2. 医疗领域 3. 金融领域 4. 其他领域 四、数据挖掘面临的挑战和未来趋势 1. 面临的挑战 2. 未来趋势 五、总结 数据…...
Go 语言中的内置运算符
1. 算术运算符 注意: (自增)和--(自减)在 Go 语言中是单独的语句,并不是运算符。 package mainimport "fmt"func main() {fmt.Println("103", 103) // 13fmt.Println("10-3…...
RMQ 算法详解(区间最值问题)
RMQ 算法详解(区间最值问题) 问题介绍解决方法暴力法ST表法基本思想算法步骤C实现 问题介绍 RMQ问题是OI中经常遇到的问题,主要是一下形式: 给你一堆数,不断的对里面的数进行操作,例如:让某个…...
振动力学:弹性杆的纵向振动(固有振动和固有频率的概念)
文章1、2、3中讨论的是离散系统的振动特性,然而实际系统的惯性质量、弹性、阻尼等特性都是连续分布的,因而成为连续系统或分布参数系统。确定连续介质中无数个点的运动需要无限个广义坐标,因此也称为无限自由度系统,典型的结构例如:弦、杆、膜、环、梁、板、壳等,也称为弹…...
