当前位置: 首页 > news >正文

yolo源码注释4——yolo-py

代码基于yolov5 v6.0

目录:

  • yolo源码注释1——文件结构
  • yolo源码注释2——数据集配置文件
  • yolo源码注释3——模型配置文件
  • yolo源码注释4——yolo-py

yolo.py 用于搭建 yolov5 的网络模型,主要包含 3 部分:

  • Detect:Detect 层
  • Model:搭建网络
  • parse_model:根据配置实例化模块

Model(仅注释了 init 函数):

class Model(nn.Module):# YOLOv5 modeldef __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  # model, input channels, number of classessuper().__init__()if isinstance(cfg, dict):self.yaml = cfg  # model dictelse:  # is *.yamlimport yamlself.yaml_file = Path(cfg).namewith open(cfg, encoding='ascii', errors='ignore') as f:self.yaml = yaml.safe_load(f)# Define modelch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channelsif nc and nc != self.yaml['nc']:LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")self.yaml['nc'] = nc  # override yaml valueif anchors:LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')self.yaml['anchors'] = round(anchors)  # override yaml value# 根据配置搭建网络self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])self.names = [str(i) for i in range(self.yaml['nc'])]  # default namesself.inplace = self.yaml.get('inplace', True)# 计算生成 anchors 时的步长m = self.model[-1]  # Detect()if isinstance(m, Detect):s = 256  # 2x min stridem.inplace = self.inplacem.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])  # forwardcheck_anchor_order(m)  # must be in pixel-space (not grid-space)m.anchors /= m.stride.view(-1, 1, 1)self.stride = m.strideself._initialize_biases()  # only run once# Init weights, biasesinitialize_weights(self)self.info()LOGGER.info('')

parse_model:

def parse_model(d, ch):  # model_dict, input_channels(3)LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchorsno = na * (nc + 5)  # number of outputs = anchors * (classes + 5)# layers: 保存每一层的结构# save: 记录 from 不是 -1 的层,即需要多个输入的层如 Concat 和 Detect 层# c2: 当前层输出的特征图数量layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch outfor i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from:-1, number:1, module:'Conv', args:[64, 6, 2, 2]m = eval(m) if isinstance(m, str) else m  # eval strings, m:<class 'models.common.Conv'># 数字、列表直接放入args[i],字符串通过 eval 函数变成模块for j, a in enumerate(args):try:args[j] = eval(a) if isinstance(a, str) else a  # eval strings, [64, 6, 2, 2]except NameError:pass# 对数量大于1的模块和 depth_multiple 相乘然后四舍五入n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain# 实例化 ymal 文件中的每个模块if m in (Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,BottleneckCSP, C3, C3TR, C3SPP, C3Ghost,SE, FSM):c1, c2 = ch[f], args[0]  # 输入特征图数量(f指向的层的输出特征图数量),输出特征图数量# 如果输出层的特征图数量不等于 no (Detect输出层)# 则将输出图的特征图数量乘 width_multiple ,并调整为 8 的倍数if c2 != no:  # if not outputc2 = make_divisible(c2 * gw, 8)args = [c1, c2, *args[1:]]  # 默认参数格式:[输入, 输出, 其他参数……]# 参数有特殊格式要求的模块if m in [BottleneckCSP, C3, C3TR, C3Ghost, CSPStage]:args.insert(2, n)  # number of repeatsn = 1elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum(ch[x] for x in f)elif m is Detect:args.append([ch[x] for x in f])if isinstance(args[1], int):  # number of anchorsargs[1] = [list(range(args[1] * 2))] * len(f)elif m is Contract:c2 = ch[f] * args[0] ** 2elif m is Expand:c2 = ch[f] // args[0] ** 2else:c2 = ch[f]m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # modulet = str(m)[8:-2].replace('__main__.', '')  # module typenp = sum(x.numel() for x in m_.parameters())  # number paramsm_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number paramsLOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # printsave.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelistlayers.append(m_)if i == 0:ch = []ch.append(c2)return nn.Sequential(*layers), sorted(save)

相关文章:

yolo源码注释4——yolo-py

代码基于yolov5 v6.0 目录&#xff1a; yolo源码注释1——文件结构yolo源码注释2——数据集配置文件yolo源码注释3——模型配置文件yolo源码注释4——yolo-py yolo.py 用于搭建 yolov5 的网络模型&#xff0c;主要包含 3 部分&#xff1a; Detect&#xff1a;Detect 层Model…...

计算机网络中速率和带宽的区别

速率&#xff0c;指的是连接在计算机网络上的主机在数字信道上传送数据的速率&#xff0c;它也称为数据率或比特率&#xff0c;单位是bps。速率往往指的是额定速率或者标称速率&#xff0c;意思也就是在非常理想的情况下才能达到的数据传送的速率&#xff0c;然而在现实生活中是…...

MySQL数据库练习

目录 表结构 建表 插入数据 1、用SQL语句创建学生表student&#xff0c;定义主键&#xff0c;姓名不能重名&#xff0c;性别只能输入男或女&#xff0c;所在系的默认值是 “计算机”。 2、修改student 表中年龄&#xff08;age&#xff09;字段属性&#xff0c;数据类型由…...

Redis BitMap/HyperLogLog/GEO/布隆过滤器案例

面试问题&#xff1a; 抖音电商直播&#xff0c;主播介绍的商品有评论&#xff0c;1个商品对应了1系列的评论&#xff0c;排序展现取前10条记录用户在手机App上的签到打卡信息&#xff1a;1天对应1系列用户的签到记录&#xff0c;新浪微博、钉钉打卡签到&#xff0c;来没来如何…...

POI处理excel,根据XLOOKUP发现部分公式格式不支持问题

poi4不支持XLOOKUP函数&#xff0c;但poi最新的5.2.3却已经对此函数做了支持 poi下载地址&#xff1a;Index of /dist/poi/release/bin 公式源码位置&#xff1a;org/apache/poi/ss/formula/atp/XLookupFunction.java 但是在使用此函数过程中&#xff0c;发现有些XLOOKUP函数会…...

第一次PR经历

第一次PR测试地址&#xff1a;https://github.com/firstcontributions/first-contributions说明文档&#xff1a; https://github.com/firstcontributions/first-contributions/blob/main/translations/README.zh-cn.md...

背上小书包准备面试之TypeScript篇

目录 typescript是啥&#xff1f;与javascript的区别&#xff1f; typescript数据类型&#xff1f; typescript中枚举类型&#xff1f;应用场景&#xff1f; typescript中接口的理解&#xff1f;应用场景&#xff1f; typescript中泛型的理解&#xff1f;应用场景&#xf…...

【Spring】浅谈spring为什么推荐使用构造器注入

目录 一、前言 二、常见的三种注入方式 2.1 field注入 2.2 构造器注入 2.3 setter注入 三、构造器注入的好处 四、答疑 五、总结 一、前言 ​ Spring框架对Java开发的重要性不言而喻&#xff0c;其核心特性就是IOC&#xff08;Inversion of Control&#xff0c; 控制反转&…...

在阿里云Linux服务器上部署MySQL数据库流程

阿里云百科分享在阿里云Linux服务器上部署MySQL数据库流程&#xff0c;MySQL是一个关系型数据库管理系统&#xff0c;常用于LAMP和LNMP等网站场景中。本教程介绍如何在Linux系统ECS实例上安装、配置以及远程访问MySQL数据库。 目录 背景信息 Alibaba Cloud Linux 2/3、CentO…...

实战——OPenPose讲解及代码实现

一些前提 先思考下面几个问题&#xff1b; 1、什么是姿态估计&#xff1f; 参考&#xff1a;Point Detect任务&#xff0c;识别人体指定部分的关键点&#xff1b; 2、姿态估计中的难点是什么&#xff1f; 从干扰的角度&#xff0c;人体被遮挡对检测的影响很大&#xff1b;…...

专注于创意设计,为您的小程序和网站建设带来更多的可能性

随着移动互联网的快速发展&#xff0c;越来越多的企业开始关注小程序和网站建设&#xff0c;以此来拓展业务和提升品牌形象。 在这个领域中&#xff0c;创意设计扮演着关键的角色。它不仅可以帮助企业打造独特的形象和品牌&#xff0c;还能够提高用户体验和购买决策的效率。 因…...

ATF(TF-A)安全通告 TFV-6 (CVE-2017-5753, CVE-2017-5715, CVE-2017-5754)

ATF(TF-A)安全通告汇总 目录 一、ATF(TF-A)安全通告 TFV-6 (CVE-2017-5753, CVE-2017-5715, CVE-2017-5754) 二、Variant 1 (CVE-2017-5753) 三、Variant 2 (CVE-2017-5715) 四、Variant 3 (CVE-2017-5754) 一、ATF(TF-A)安全通告 TFV-6 (CVE-2017-5753, CVE-2017-5715, C…...

vue3 基础语法 02

你好&#xff0c;今天过的怎么样呀&#xff0c;嘿嘿&#xff0c;加油夏 &#x1f495; 文章目录 一、模板语法 一、模板语法 React的开发模式&#xff1a; React 使用的 jsx&#xff0c;对应的代码编写的类似于js的一种语法&#xff1b;通过 Babel 将 jsx &#xff0c; 编译成…...

版本控制工具——git

版本控制是指对软件开发过程中各种程序代码、配置文件及说明文档等文件变更的管理&#xff0c;是软件配置管理的核心思想之一。 版本控制最主要的功能就是追踪文件的变更。它将什么时候、什么人更改了文件的什么内容等信息忠实地了记录下来。每一次文件的改变&#xff0c;文件的…...

超详细,自动化测试实战-获取配置文件信息(实例源码)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 配置文件的类型 …...

spring 2.7.14 cors 设置 allowedOrigins(“*“)通配符 失效怎么解决

失效代码&#xff1a; package com.yukuanyan.searcher_web.config;import org.springframework.context.annotation.Configuration; import org.springframework.web.servlet.config.annotation.CorsRegistry; import org.springframework.web.servlet.config.annotation.WebM…...

一、Go的前景与优势、基础语法

Go简介 Go的公司、场景应用 公司占比&#xff1a; 字节跳动领先&#xff0c;公司内部有上万个微服务使用go来编写&#xff0c;不久前也开源了GO RPC框架KiteX。 同时&#xff0c;腾讯、百度、美团、滴滴、深信服、平安、OPPO、知乎、去哪儿、360、金山、微博、哩哔哩、七牛、…...

shell脚本循环语句

shell脚本循环语句 一.echo命令二.查看当前系统的时间--date命令三.循环语句for四.while循环语句结构五.while循环语句结构&#xff08;迭代&#xff09;六.continue和break 一.echo命令 echo -n 表示不换行输出 echo -e输出转义符&#xff0c;将转义后的内容输出到屏幕上 常…...

二叉树题目:二叉树的直径

文章目录 题目标题和出处难度题目描述要求示例数据范围 解法思路和算法代码复杂度分析 题目 标题和出处 标题&#xff1a;二叉树的直径 出处&#xff1a;543. 二叉树的直径 难度 3 级 题目描述 要求 给定二叉树的根结点 root \texttt{root} root&#xff0c;返回其直径…...

嵌入式:C高级 Day4

一、整理思维导图 二、写一个函数&#xff0c;获取用户的uid和gid并使用变量接收 三、整理冒泡排序、简单选择排序和快速排序的代码 冒泡排序 #include <myhead.h>void output(int arr[], int len); void bubble_sort(int arr[], int len);int main(int argc, const ch…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...