当前位置: 首页 > news >正文

基于自适应曲线阈值和非局部稀疏正则化的压缩感知图像复原研究【自适应曲线阈值去除加性稳态白/有色高斯噪声】(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

文献来源:

 压缩传感(CS)是最近出现的技术,也是信号和图像处理中广泛研究的问题,它提出了一种新的框架,用于以明显低于奈奎斯特速率的速率同时采样和压缩稀疏或可压缩信号。也许,设计一个反映图像稀疏先验信息的有效正则化项在CS图像恢复中起着至关重要的作用。近年来,局部平滑度和非局部自相似性都导致了CS图像恢复的先验稀疏性。本文首先,建立了自适应曲线阈值判据,试图自适应去除CS恢复过程中恢复图像中出现的扰动,强加稀疏性。此外,还建立了一种新的稀疏性度量,称为联合自适应稀疏性正则化(JASR),该度量在变换域中同时强制执行局部稀疏性和非局部三维稀疏性。然后,提出了一种基于JASR的高保真CS图像恢复技术——CS-JASR。为了有效地求解所提出的相应优化问题,我们采用了拆分布雷格曼迭代。大量的实验结果证明了与目前最先进的CS图像修复方法相比,所提方法的充分性和有效性。

原文摘要:

Compressive sensing (CS) is a recently emerging technique and an extensively studied problem in signal and image processing, which suggests a new framework for the simultaneous sampling and compression of sparse or compressible signals at a rate significantly below the Nyquist rate. Maybe, designing an effective regularization term reflecting the image sparse prior information plays a critical role in CS image restoration. Recently, both local smoothness and nonlocal self-similarity have led to superior sparsity prior for CS image restoration. In this paper, first, an adaptive curvelet thresholding criterion is developed, trying to adaptively remove the perturbations appeared in recovered images during CS recovery process, imposing sparsity. Furthermore, a new sparsity measure called joint adaptive sparsity regularization (JASR) is established, which enforces both local sparsity and nonlocal 3-D sparsity in transform domain, simultaneously. Then, a novel technique for high-fidelity CS image recovery via JASR is proposed-CS-JASR. To efficiently solve the proposed corresponding optimization problem, we employ the split Bregman iterations. Extensive experimental results are reported to attest the adequacy and effectiveness of the proposed method comparing with the current state-of-the-art methods in CS image restoration.

📚2 运行结果

 

可视化代码:

%%% displaying the images
figure, 

subplot(2,3,1), imagesc(noise), colormap('gray'),
colorbar, title('noise'), axis off

subplot(2,3,4), imagesc(fftshift(noise_FFT_PSD)), colormap('jet'),
colorbar, title('noise FFT-PSD'), axis off

subplot(2,3,2), imagesc(x), colormap('gray'),
colorbar, title('ground-truth'), axis off

subplot(2,3,3), imagesc(z), colormap('gray'),
colorbar, axis off, title(sprintf('noisy image\nPSNR=%0.2fdB',psnr_noisy))

subplot(2,3,5), imagesc(x_est_ksigma), colormap('gray'),
colorbar, axis off, title(sprintf('denoised image using k-sigma\nPSNR=%0.2fdB',psnr_ksigma))

subplot(2,3,6), imagesc(x_est_ACT), colormap('gray'),
colorbar, axis off, title(sprintf('denoised image using ACT\nPSNR=%0.2fdB',psnr_act))


%%  Auxiliary function for generating Gaussian noise

function  [noise, noise_FFT_PSD] = generate_Gaussian_noise(SizeX)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% generate_Gaussian_noise creates stationary white/colored Gaussian noise
% with respect to a convolutional kernel selected randomly.
%
%
% FUNCTION INTERFACE:
%         [noise, noise_FFT_PSD] = generate_Gaussian_noise(SizeX)
%
% ________________________________________________________________________________
%  INPUT:        |  CLASS:  | DESCRIPTION:
% --------------------------------------------------------------------------------
%  SizeX         | (double) | Size of the ground-truth image.
%
%
% ________________________________________________________________________________
%  OUTPUTS:      |  CLASS:  | DESCRIPTION:
% --------------------------------------------------------------------------------
%  noise         | (double) | generated stationary Guassian noise.
% --------------------------------------------------------------------------------
%  noise_FFT_PSD | (double) | the noise FFT-PSD (as size as SizeX).  
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
kernel_type  = randi([1 14]); % the randomly selected kernel for noise generation
normalizer   = @(n) (n-mean(n(:)))./std(n(:)); % making the noise zero-mean with unit variance

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

Compressive Sensing Image Restoration Using Adaptive Curvelet Thresholding and Nonlocal Sparse Regularization | IEEE Journals & Magazine | IEEE Xplore

🌈4 Matlab代码实现

相关文章:

基于自适应曲线阈值和非局部稀疏正则化的压缩感知图像复原研究【自适应曲线阈值去除加性稳态白/有色高斯噪声】(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

Spring AOP 切点表达式

参考博客: 参考博客...

打破传统直播,最新数字化升级3DVR全景直播

导语: 近年来,随着科技的不断创新和发展,传媒领域也正经历着一场前所未有的变革。在这个数字化时代,直播已经不再仅仅是在屏幕上看到一些人的视频,而是将观众带入一个真实世界的全新体验。其中,3DVR全景直…...

网络安全--利用awk分析Apache日志

一、溯源 你会溯源吗?怎么溯 拿到日志(ssh登录日志,Apache日志),通过日志溯到ip,对日志进行每天的拆分,第二通过awk日志分析工具对每天的日志进行拆分,分析某一个ip今天对我访问多…...

计算机视觉一 —— 介绍与环境安装

傲不可长 欲不可纵 乐不可极 志不可满 一、介绍 研究理论和应用 - 研究如何使机器“看”的科学 - 让计算机具有人类视觉的所有功能 - 让计算机从图像中,提取有用的信息,并解释 - 重构人眼;重构视觉皮层;重构大脑剩余部分 计…...

如何看懂统一社会信用代码?

在查看企业信息的时候,我们通常第一时间查看的就是该企业的照面信息:企业名称,企业信用代码,企业法人等等。 其中统一社会信用代码就是给各个企业组织编号,是便于统一识别管理的一串代码,类似我们的身份证…...

计算机网络 运输层端口号,复用、分用

...

systrace: 系统级跟踪工具的解析

关于作者:CSDN内容合伙人、技术专家, 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 ,擅长java后端、移动开发、人工智能等,希望大家多多支持。 目录 一、导读二、概览三、获取systrace文件3.1 通过python命令获取3.1.…...

关于青少年学习演讲与口才对未来的领导力的塑造的探析

标题:青少年学习演讲与口才对未来领导力的塑造:一项探析 摘要: 本论文旨在探讨青少年学习演讲与口才对未来领导力的塑造的重要性和影响。通过分析演讲和口才对青少年的益处,以及如何培养这些技能来促进领导力的发展,我…...

大数据分析案例-基于KMeans和DBSCAN算法对汽车行业客户进行聚类分群

🤵‍♂️ 个人主页:艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞&#x1f4…...

Vue 3 中定义组件常用方法

在Vue 3 中有多种定义组件的方法。从选项到组合再到类 API,情况大不相同 1、方式一:Options API 这是在 Vue 中声明组件的最常见方式。从版本 1 开始可用,您很可能已经熟悉它。一切都在对象内声明,数据在幕后由 Vue 响应。它不是…...

Linux | curl命令调用接口时查看调用时长和详情

关注wx&#xff1a; CodingTechWork 引言 在服务器中通过curl命令调用接口时&#xff0c;我们经常需要分析一些时长。本文主要总结两种方式进行处理。 curl命令 使用time命令 time curl -k -u <username>:<password> https://127.0.0.1/xxxx -vvv 使用文本 编…...

用ngrok实现内网穿透,一行命令就搞定!

最近在写支付的东西&#xff0c;调试时候需要让支付平台能够回调本地接口来更新支付成功的状态。但由于开发机器没有公网IP&#xff0c;所以需要使用内网穿透来让支付平台能够成功访问到本地开发机器&#xff0c;这样才能更高效率的进行调试。 推荐内网穿透的文章已经很多很多…...

C++ 混合Python编程 及 Visual Studio配置

文章目录 需求配置环节明确安装的是64位Python安装目录 创建Console C ProjectCpp 调用 Python Demo 参考 需求 接手了一个C应用程序&#xff0c;解析csv和生成csv文件&#xff0c;但是如果要把多个csv文件合并成一个Excel&#xff0c;分布在不同的Sheet中&#xff0c;又想在一…...

斐波拉契数列+二进制--夏令营

1. f[40]{0,1} 数组赋值&#xff1a;只赋值前两个的话&#xff0c;剩余的自动为0 2.先要自己写出斐波拉契数列判断一下应该要多少个斐波拉契数样例&#xff0c;第39项已经超样例数500了&#xff0c;所以够用 3.就是把一个数字拆分成斐波拉契数列里的数的和嘛&#xff0c;但是…...

【使用Hilbert变换在噪声信号中进行自动活动检测】基于Hilbert变换和平滑技术进行自动信号分割和活动检测研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

Android 13 Launcher——屏蔽上拉到应用列表

背景 Launcher定制需要将原先的应用列表去掉,可以从根源去掉,就是将上拉出现应用列表的上拉手势直接屏蔽,让其不能上拉出现应用列表界面,在研究的过程中顺便将下拉出现负一屏的逻辑也研究了下,如下就是具体实现。 目录 背景 一.如何屏蔽上拉出现应用列表 一.如何屏蔽上拉…...

Java 基础知识点

Object 类相关方法 getClass 获取当前运行时对象的 Class 对象。 hashCode 返回对象的 hash 码。 clone 拷贝当前对象&#xff0c; 必须实现 Cloneable 接口。浅拷贝对基本类型进行值拷贝&#xff0c;对引用类型拷贝引用&#xff1b;深拷贝对基本类型进行值拷贝&#xff0c;对…...

jenkins容器内CI/CD 项目失败问题

问题&#xff1a; 在jenkins 的docker容器内CI/CD制作vue项目镜像失败 1、docker权限问题 permission denied while trying to connect to the Docker daemon socket at unix:///var/run/docker.sock: Post "http://%2Fvar%2Frun%2Fdocker.sock/v1.24/build?buildargs%…...

CRC 校验码

CRC 校验码 题目解答发送端接收端 题目 假设生成多项式为 G(X)X4X31&#xff0c;要求出二进制序列10110011的CRC校验码 解答 发送端 首先 生成多项式为&#xff1a;G(X)X4X31&#xff0c;改写为二进制比特串为11001(有X的几次方&#xff0c;对应的2的几次方的位就是1) 因为…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...