当前位置: 首页 > news >正文

Matlab实现模拟退火算法(附上多个完整源码)

模拟退火算法(Simulated Annealing)是一种全局优化算法,其基本思想是通过模拟物理退火过程来寻找最优解。该算法可以应用于各种优化问题,如函数优化、组合优化、图形优化等。

文章目录

  • 步骤
  • 简单案例
  • 完整仿真源码下载

步骤

在Matlab中实现模拟退火算法,可以按照以下步骤进行:

  1. 定义问题:首先需要定义优化问题,即目标函数和变量范围。例如,可以定义目标函数为f(x,y)=x2+y2,变量范围为-10<=x<=10,-10<=y<=10。

  2. 初始化:随机选择一个初始解x0,计算其对应的目标函数值f(x0)。

  3. 设定温度初始值:设定一个初始温度T0,一般取较高的值,例如100。

  4. 设定温度下降策略:设定一个温度下降策略,例如T(k+1)=0.99*T(k),即每次迭代温度降低1%。

  5. 设定停止条件:设定一个停止条件,例如当温度降低到一定程度或者迭代次数达到一定值时停止迭代。

  6. 迭代求解:在每个温度下,随机生成一个新解x1,计算其对应的目标函数值f(x1)。计算新解与当前解之间的差值Δf=f(x1)-f(x0)。

  7. 判断是否接受新解:根据Metropolis准则,设定一个接受新解的概率p=exp(-Δf/T),如果p大于一个随机数r(0<r<1),则接受新解,否则保留当前解。

  8. 更新当前解:如果接受新解,则更新当前解为x1,否则保留当前解x0。

  9. 重复迭代:重复以上步骤,直至满足停止条件。

简单案例

以下是Matlab代码实现模拟退火算法的示例:

% 定义目标函数
function y = target_func(x)y = x(1)^2 + x(2)^2;
end% 初始化
x0 = [0, 0]; % 初始解
f0 = target_func(x0); % 初始解对应的目标函数值% 设定初始温度和温度下降策略
T0 = 100; % 初始温度
k = 1; % 迭代次数
T = T0; % 当前温度% 设定停止条件
max_iter = 1000; % 最大迭代次数while k < max_iter && T > 1e-3% 生成新解x1 = x0 + randn(1, 2); % 随机生成一个新解f1 = target_func(x1); % 计算新解对应的目标函数值delta_f = f1 - f0; % 计算目标函数值的差值% 判断是否接受新解if delta_f < 0 || exp(-delta_f/T) > rand()x0 = x1; % 接受新解f0 = f1;end% 更新温度T = 0.99*T;k = k + 1;
end% 输出结果
disp(['Optimal solution: (', num2str(x0(1)), ', ', num2str(x0(2)), ')']);
disp(['Optimal value: ', num2str(f0)]);

以上代码演示了如何使用Matlab实现模拟退火算法求解一个二元函数的最小值。在实际应用中,可以根据具体问题来定义目标函数和变量范围,并调整温度下降策略和停止条件等参数,以获得更好的优化效果。

完整仿真源码下载

基于Matlab实现模拟退火(完整源码+HTML界面).rar :https://download.csdn.net/download/m0_62143653/88066595

基于Matlab实现模拟退火算法(完整源码).rar :https://download.csdn.net/download/m0_62143653/87959452

基于Matlab遗传模拟退火算法的聚类算法(完整源码+数据).rar:https://download.csdn.net/download/m0_62143653/87917112

基于Matlab模拟退火算法工具箱及应用(完整源码).rar :https://download.csdn.net/download/m0_62143653/87917100

基于Matlab模拟退火算法的TSP算法(完整源码+数据).rar:https://download.csdn.net/download/m0_62143653/87917096

基于Matlab实现模拟退火(完整源码).rar:https://download.csdn.net/download/m0_62143653/87680774

基于Matlab实现模拟退火算法进行路径规划(完整源码).rar:https://download.csdn.net/download/m0_62143653/87864289

基于Matlab实现模拟退火(完整源码).rar:https://download.csdn.net/download/m0_62143653/87803848

相关文章:

Matlab实现模拟退火算法(附上多个完整源码)

模拟退火算法&#xff08;Simulated Annealing&#xff09;是一种全局优化算法&#xff0c;其基本思想是通过模拟物理退火过程来寻找最优解。该算法可以应用于各种优化问题&#xff0c;如函数优化、组合优化、图形优化等。 文章目录 步骤简单案例完整仿真源码下载 步骤 在Mat…...

前后端分离------后端创建笔记(03)前后端对接(上)

本文章转载于【SpringBootVue】全网最简单但实用的前后端分离项目实战笔记 - 前端_大菜007的博客-CSDN博客 仅用于学习和讨论&#xff0c;如有侵权请联系 源码&#xff1a;https://gitee.com/green_vegetables/x-admin-project.git 素材&#xff1a;https://pan.baidu.com/s/…...

stable diffusion安装包和超火使用文档及提示词,数字人网址

一&#xff1a;文生图、图生图 1&#xff1a;stable diffusion&#xff1a;对喜欢二次元、美女小姐姐、大眼萌妹的人及其友好哈哈(o^^o) 1&#xff09;&#xff1a;关于安装包和模型包&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/11_kguofh76gwhTBPUipepw 提取码…...

训练营:贪心篇

贪心就是&#xff1a;局部最优 1、455. 分发饼干 按照饼干分&#xff0c;从大到小&#xff0c;最大的给胃口最大能满足的 def findContentChildren455(g, s):g sorted(g,reverseTrue)s sorted(s,reverseTrue)j0c 0i0while(i<len(s) and j<len(g)):if s[i]>g[j]:c…...

四、Dubbo扩展点加载机制

四、Dubbo扩展点加载机制 4.1 加载机制概述 Dubbo良好的扩展性与框架中针对不同场景使用合适设计模式、加载机制密不可分 Dubbo几乎所有功能组件都是基于扩展机制&#xff08;SPI&#xff09;实现的 Dubbo SPI 没有直接使用 Java SPI&#xff0c;在它思想上进行改进&#xff…...

[保研/考研机试] KY103 2的幂次方 上海交通大学复试上机题 C++实现

题目链接&#xff1a; KY103 2的幂次方 https://www.nowcoder.com/share/jump/437195121691999575955 描述 Every positive number can be presented by the exponential form.For example, 137 2^7 2^3 2^0。 Lets present a^b by the form a(b).Then 137 is present…...

时序预测 | MATLAB实现基于BP神经网络的时间序列预测-递归预测未来(多指标评价)

时序预测 | MATLAB实现基于BP神经网络的时间序列预测-递归预测未来(多指标评价) 目录 时序预测 | MATLAB实现基于BP神经网络的时间序列预测-递归预测未来(多指标评价)预测结果基本介绍程序设计参考资料 预测结果 基本介绍 Matlab实现BP神经网络时间序列预测未来&#xff08;完整…...

组合模式(C++)

定义 将对象组合成树形结构以表示部分-整体’的层次结构。Composite使得用户对单个对象和组合对象的使用具有一致性(稳定)。 应用场景 在软件在某些情况下&#xff0c;客户代码过多地依赖于对象容器复杂的内部实现结构&#xff0c;对象容器内部实现结构(而非抽象接口)的变化…...

git上传问题记录

unable to access ‘https://github.com/songjiahao-wq/untitled.git/’: Failed to connect to github.com port 443 after 21086 ms: Couldn’t connect to serve 解决办法&#xff1a;修改 Git 的网络设置 打开git Bash运行&#xff0c;clash代理一般是下面的端口 # 注意…...

通过动态IP解决网络数据采集问题

动态地址的作用 说到Python网络爬虫&#xff0c;很多人都会遇到困难。最常见的就是爬取过程中IP地址被屏蔽。虽然大部分都是几个小时内自动解封的&#xff0c;但这对于分秒必争的python网络爬虫来说&#xff0c;是一个关键性的打击&#xff01;当一个爬虫被阻塞时&#xff0c;…...

可重入锁,不可重入锁,死锁的多种情况,以及产生的原因,如何解决,synchronized采用的锁策略(渣女圣经)自适应的底层,锁清除,锁粗化,CAS的部分应用

一、&#x1f49b; 锁策略——接上一篇 6.分为可重入锁&#xff0c;不可重入锁 如果一个线程&#xff0c;针对一把锁&#xff0c;连续加锁两次&#xff0c;会出现死锁&#xff0c;就是不可重入锁&#xff0c;不会出现死锁&#xff0c;就是可重入锁。 如果一个线程&#xff0c;针…...

JSON.parse()和JSON.stringify()用法

JSON.parse() 方法用于将 JSON 格式的字符串转换为 JavaScript 对象&#xff0c;而 JSON.stringify() 方法用于将 JavaScript 对象转换为 JSON 字符串。这两个方法可以组合使用来实现将数据从对象到字符串再到对象的转换。 示例 // 创建一个包含属性的 JavaScript 对象 var pe…...

Android 并发编程--阻塞队列和线程池

一、阻塞队列 队列是一种特殊的线性表&#xff0c;特殊之处在于它只允许在表的前端&#xff08;front&#xff09;进行删除操作&#xff0c;而在表的后端&#xff08;rear&#xff09;进行插入操作&#xff0c;和栈一样&#xff0c;队列是一种操作受限制的线性表。进行插入操作…...

Playwright快速上手-1

前言 随着近年来对UI自动化测试的要求越来越高&#xff0c;,功能强大的测试框架也不断的涌现。本系列主讲的Playwright作为一款新兴的端到端测试框架,凭借其独特优势,正在逐渐成为测试工程师的热门选择。 本系列文章将着重通过示例讲解 Playwright python开发环境的搭建 …...

PPT颜色又丑又乱怎么办?

一、设计一套PPT时&#xff0c;可以从这5个方面进行设计 二、PPT颜色 &#xff08;一&#xff09;、PPT常用颜色分类 一个ppt需要主色、辅助色、字体色、背景色即可。 &#xff08;二&#xff09;、搭建PPT色彩系统 设计ppt时&#xff0c;根据如下几个步骤&#xff0c;依次选…...

python计算相关系数R

方法一&#xff1a; import numpy as np# 计算相关系数R def r(y_true, y_pred):y_true np.array(y_true)y_pred np.array(y_pred)corr np.corrcoef(y_true, y_pred)[0][1]return corrcorr r(yture, ypred)方法二 import scipy.stats # 计算皮尔逊相关指数&#xff0c;并…...

黑马项目一阶段面试 自我介绍篇

面试官你好&#xff0c;我叫xxx&#xff0c;是来自xxxx的本科毕业生。我通过招聘网站/内推/线下招聘了解到的贵司&#xff0c;我具有扎实的Java后端的基础功底&#xff0c;基本掌握JavaSE、JavaEE流行技术的使用&#xff0c;并且我比较好学&#xff0c;心态也很乐观积极&#x…...

时序预测 | MATLAB实现CNN-BiGRU-Attention时间序列预测

时序预测 | MATLAB实现CNN-BiGRU-Attention时间序列预测 目录 时序预测 | MATLAB实现CNN-BiGRU-Attention时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MATLAB实现CNN-BiGRU-Attention时间序列预测&#xff0c;CNN-BiGRU-Attention结合注意力机制时…...

开发过程中遇到的问题以及解决方法

巩固基础&#xff0c;砥砺前行 。 只有不断重复&#xff0c;才能做到超越自己。 能坚持把简单的事情做到极致&#xff0c;也是不容易的。 开发过程中遇到的问题以及解决方法 简单易用的git命令 git命令&#xff1a; 查看有几个分支&#xff1a;git branch -a 切换分支&#…...

本地oracle登录账号锁定处理,the account is locked

1.打开cmd命令窗口 2.打开sqlplus: sqlplus /nolog(加/nolog是不登录服务器的意思&#xff0c;不加就需要输账号密码) 3.切换到管理员&#xff1a;conn / as sysdba; 第2步第3步可以合并&#xff0c;直接使用sysdba登录&#xff1a;sqlplus / as sysdba; 4.解锁账号&#x…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了&#xff0c;报错如下四、启动不了&#xff0c;解决如下 总结 问题原因 在应用中可以看到chrome&#xff0c;但是打不开(说明&#xff1a;原来的ubuntu系统出问题了&#xff0c;这个是备用的硬盘&a…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请&#xff0c;不同级别的经理有不同的审批权限&#xff1a; // 抽象处理者&#xff1a;审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...