RANSAC算法
RANSAC简介
RANSAC(RAndom SAmple Consensus,随机采样一致)算法是从一组含有“外点”(outliers)的数据中正确估计数学模型参数的迭代算法。
“外点”一般指的的数据中的噪声,比如说匹配中的误匹配和估计曲线中的离群点。所以,RANSAC也是一种“外点”检测算法。RANSAC算法是一种不确定算法,它只能在一种概率下产生结果,并且这个概率会随着迭代次数的增加而加大。
- “内群”(inlier, 即正常数据)数据可以通过几组模型的参数来叙述其分布,而“离群”(outlier,似乎译为外点群更加妥当,异常数据)数据则是不适合模型化的数据。
- 数据会受噪声影响,噪声指的是离群,例如从极端的噪声或错误解释有关数据的测量或不正确的假设。
- RANSAC假定,给定一组(通常很小)的内点群,存在一个程序,这个程序可以估算最佳解释或最适用于这一数据模型的参数。
算法基本思想和流程
RANSAC是通过反复选择数据集去估计出模型,一直迭代到估计出认为比较好的模型。
具体的实现步骤可以分为以下几步:
- 选择出可以估计出模型的最小数据集;(对于直线拟合来说就是2个点,对于平面拟合就是3个点)
- 使用这个数据集来计算出数据模型;
- 将所有数据带入这个模型,计算出“内点”的数目;(累加在一定误差范围内的适合当前迭代推出模型的数据)
- 比较当前模型和之前推出的最好的模型的“内点“的数量,记录最大“内点”数的模型参数和“内点”数;
- 重复1-4步,直到迭代结束或者当前模型已经足够好了(“内点数目大于一定数量”)。
RANSAC筛除地面点云
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/segmentation/sac_segmentation.h>int main()
{// 读取点云数据pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);pcl::io::loadPCDFile<pcl::PointXYZ>("input_cloud.pcd", *cloud);// 创建地面分割对象pcl::SACSegmentation<pcl::PointXYZ> seg;pcl::PointIndices::Ptr inliers(new pcl::PointIndices);pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);// 设置地面分割参数seg.setOptimizeCoefficients(true);seg.setModelType(pcl::SACMODEL_PLANE);seg.setMethodType(pcl::SAC_RANSAC);seg.setMaxIterations(1000);seg.setDistanceThreshold(0.01);// 执行地面分割seg.setInputCloud(cloud);seg.segment(*inliers, *coefficients);// 创建提取器对象pcl::ExtractIndices<pcl::PointXYZ> extract;pcl::PointCloud<pcl::PointXYZ>::Ptr ground_cloud(new pcl::PointCloud<pcl::PointXYZ>);// 提取地面点云extract.setInputCloud(cloud);extract.setIndices(inliers);extract.setNegative(false);extract.filter(*ground_cloud);// 提取非地面点云pcl::PointCloud<pcl::PointXYZ>::Ptr non_ground_cloud(new pcl::PointCloud<pcl::PointXYZ>);extract.setNegative(true);extract.filter(*non_ground_cloud);// 保存结果pcl::io::savePCDFile<pcl::PointXYZ>("ground_cloud.pcd", *ground_cloud);pcl::io::savePCDFile<pcl::PointXYZ>("non_ground_cloud.pcd", *non_ground_cloud);std::cout << "地面点云保存成功!" << std::endl;return 0;
}相关文章:
RANSAC算法
RANSAC简介 RANSAC(RAndom SAmple Consensus,随机采样一致)算法是从一组含有“外点”(outliers)的数据中正确估计数学模型参数的迭代算法。 “外点”一般指的的数据中的噪声,比如说匹配中的误匹配和估计曲线中的离群点。所以,RANSAC也是一种“外点”检…...
考研408 | 【计算机网络】 传输层
导图 传输层的功能 传输层的两个协议 传输层的寻址与端口 UDP协议 UDP的主要特点 UDP首部格式: UDP校验: TCP协议 TCP协议的特点 TCP报文段首部格式 TCP连接管理 TCP的连接建立 SYN洪泛攻击 TCP的连接释放 TCP可靠传输 序号: 确认࿱…...
Redis_缓存3_缓存异常(数据不一致、雪崩、击穿、穿透)
14.6缓存异常 四个方面 缓存中数据和数据库不一致缓存雪崩缓存击穿缓存穿透 14.6.1数据不一致: 一致性包括两种情况 缓存中有数据,需要和数据库值相同缓存中没有数据,数据库中的数据是最新值 如果不符合以上两种情况,则出现…...
谁能讲清楚Spark之与MapReduce的对比
我们已经知道Spark是如何设计和实现数据处理流程的,这里我们 再深入思考一下,为什么Spark能够替代MapReduce成为主流的大数据处理框架呢?对比MapReduce,Spark究竟有哪些优势? 一 优势 1 通用性: 基于函数式编程思想,MapReduce将数据类型抽象为,k,v格式,并将数据处理…...
Android自定义侧滑Item
源码地址:https://github.com/LanSeLianMa/CustomizeView/tree/master/cehuaitem 使用方式一:XML布局中直接使用 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas.android.com…...
c++11 标准模板(STL)(std::basic_stringbuf)(三)
定义于头文件 <sstream> template< class CharT, class Traits std::char_traits<CharT>, class Allocator std::allocator<CharT> > class basic_stringbuf : public std::basic_streambuf<CharT, Traits> std::basic_stringbuf…...
Nodejs 第九章(模块化)
Nodejs 模块化规范遵循两套一 套CommonJS规范另一套esm规范 CommonJS 规范 引入模块(require)支持四种格式 支持引入内置模块例如 http os fs child_process 等nodejs内置模块支持引入第三方模块express md5 koa 等支持引入自己编写的模块 ./ …/ 等支…...
shell之正则表达式及三剑客grep命令
一、正则表达式概述 什么是正则表达式? 正则表达式是一种描述字符串匹配规则的重要工具 1、正则表达式定义: 正则表达式,又称正规表达式、常规表达式 使用字符串描述、匹配一系列符合某个规则的字符串 正则表达式 普通字符: 大小写字母…...
LeetCode 热题 100 JavaScript--33. 搜索旋转排序数组
整数数组 nums 按升序排列,数组中的值 互不相同 。 在传递给函数之前,nums 在预先未知的某个下标 k(0 < k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nums[1], …,…...
并发编程 - 线程池中的常见面试题
目录 1. 线程池相比于线程有什么优点 2. 线程池的参数有哪些 3. 线程工厂有什么用 4. 说一下线程的优先级 5. 说一下线程池的执行流程 6. 线程池的拒绝策略有哪些 7. 如何实现自定义拒绝策略 8. 如何判断线程池中的任务是否执行完成 1. 线程池相比于线程有什么优点 有…...
将多个单独的 Excel 文件合并成一个,并添加标题行
要将多个单独的 Excel 文件合并成一个,并添加标题行,可以使用 Python 的 pandas 库。以下是一个示例代码,假设要合并的 Excel 文件都在同一个文件夹中: import os import pandas as pd # 指定文件夹路径 folder_path path/to/fo…...
VPN pptp和l2tp协议破解
代码下载地址: https://download.csdn.net/download/m0_37567738/88215516?spm1001.2014.3001.5501...
4.3、Flink任务怎样读取Kafka中的数据
目录 1、添加pom依赖 2、API使用说明 3、这是一个完整的入门案例 4、Kafka消息应该如何解析 4.1、只获取Kafka消息的value部分 4.2、获取完整Kafka消息(key、value、Metadata) 4.3、自定义Kafka消息解析器 5、起始消费位点应该如何设置 5.1、earliest() 5.2、lat…...
C语言实例_和校验算法
一、算法介绍 和校验(Checksum)是一种简单的纠错算法,用于检测或验证数据传输或存储过程中的错误。它通过对数据进行计算并生成校验和,然后将校验和附加到数据中,在接收端再次计算校验和并进行比较,以确定…...
安全加密框架图——Oracle安全开发者
Oracle安全开发者 ACLs 设计 ACLs(访问控制列表)时,可以根据以下思路进行设计: 所有者文件权限:确定文件的所有者能够对文件执行哪些操作,如读取、写入、执行等。这可以根据文件的性质和拥有者的职责来决…...
Android databinding 被多次定义
一、报错: AndroidStudio运行代码时,编译器报 Type androidx.databinding.Bindable is defined multiple times...... 二、解决: 点击 Build -> Clean Project,关闭编译器再打开即可。 三、解决过程: 在使用Andro…...
云原生周刊:Kubernetes v1.28 新特性一览 | 2023.8.14
推荐一个 GitHub 仓库:Fast-Kubernetes。 Fast-Kubernetes 是一个涵盖了 Kubernetes 的实验室(LABs)的仓库。它提供了关于 Kubernetes 的各种主题和组件的详细内容,包括 Kubectl、Pod、Deployment、Service、ConfigMap、Volume、…...
机器学习之分类模型
机器学习之分类模型 概述分类模型逻辑回归最近邻分类朴素贝叶斯支持向量机决策树随机森林多层感知机基于集成学习的分类模型VotingBaggingStackingBlendingBoosting 概述 机器学习分类模型通过训练集进行学习,建立一个从输入空间 X X X到输出空间 Y Y Y(…...
学习Vue:创建第一个Vue实例
当您开始探索 Vue.js,第一步就是创建一个 Vue 实例。Vue 实例是 Vue.js 应用程序的核心构建块,它使您能够将数据与用户界面连接起来,实现动态交互。在本文中,我们将详细介绍如何创建您的第一个 Vue 实例。 步骤1:引入 …...
JavaFx基础学习【二】:Stage
一、介绍 窗口Stage为图中标绿部分: 实际为如下部分: 不同的操作系统表现的样式不同,以下都是以Windows操作系统为例,为了使大家更清楚Stage是那部分,直接看以下图,可能更清楚: 有点潦草&…...
华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...
el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...
【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
C# 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
