OPENCV C++(十一)
鼠标响应函数
//鼠标响应函数
void on_mouse(int EVENT, int x, int y, int flags, void* userdata)
{Mat hh;hh = *(Mat*)userdata;switch (EVENT){case EVENT_LBUTTONDOWN:{vP.x = x;vP.y = y;drawMarker(hh, vP, Scalar(255, 255, 255));//circle(hh, vP, 4, cvScalar(255, 255, 255), -1);imshow(wName, hh);return;}break;}}
drawMarker(hh, vP, Scalar(255, 255, 255));
这个是画一个十字符号 标记一个点
绘制直方图和以前篇幅一样
//绘制直方图
int drawHist(cv::Mat& histMat, float* srcHist, int bin_width, int bin_heght)
{histMat.create(bin_heght, 256 * bin_width, CV_8UC3);histMat = Scalar(255, 255, 255);float maxVal = *std::max_element(srcHist, srcHist + 256);for (int i = 0; i < 256; i++) {Rect binRect;binRect.x = i * bin_width;float height_i = (float)bin_heght * srcHist[i] / maxVal;binRect.height = (int)height_i;binRect.y = bin_heght - binRect.height;binRect.width = bin_width;rectangle(histMat, binRect, CV_RGB(255, 0, 0), -1);}return 0;
}
统计视频一个点不受大影响的时候直方图是高斯分布的(灰度)
int index = grayMat.at<uchar>(vP.y, vP.x);
选取刚才选中的点
histgram[index]++;
在对应的直方图加1
drawHist(histMat, histgram, bin_width, bin_heght);drawMarker(frame, vP, Scalar(255, 255, 255));
这里还要画一个drawmaker因为第二遍就不会调用了
vp要是全局变量
完整代码:
int main() {// 验证某一背景像素值呈高斯分布VideoCapture cap(0);int cnt = 0;float histgram[256] = { 0 };Mat histMat;int bin_width = 3;int bin_heght = 100;while (1){Mat frame;Mat grayMat;cap >> frame;if (cnt == 0){Mat selectMat;frame.copyTo(selectMat);imshow(wName, selectMat);setMouseCallback(wName, on_mouse, &selectMat);waitKey(0);destroyAllWindows();}cvtColor(frame, grayMat, COLOR_BGR2GRAY);int index = grayMat.at<uchar>(vP.y, vP.x);histgram[index]++;drawHist(histMat, histgram, bin_width, bin_heght);drawMarker(frame, vP, Scalar(255, 255, 255));imshow("frame", frame);imshow("histMat", histMat);if (waitKey(30) == 27) {destroyAllWindows();break;}cnt++;}
return 0;
}
当然还有一些变量需要自己设置全局变量
直接拿原图和新图直接做差分
VideoCapture cap(0);int cnt = 0;Mat frame;while (1) {cap>> frame;cvtColor(frame, frame, COLOR_BGR2GRAY);if (cnt == 0) {//第一帧,获得背景图像frame.copyTo(bgMat);}else {//第二帧开始背景差分//背景图像和当前图像相减absdiff(frame, bgMat, subMat);//差分结果二值化namedWindow("Result", WINDOW_AUTOSIZE);//滑动条创建cv::createTrackbar("threshold", "Result", &sub_threshold, 255, threshold_track);threshold_track(0, 0);imshow("frame", frame);}if (waitKey(30) == 27) {destroyAllWindows();break;}cnt++;}
其中
absdiff(frame, bgMat, subMat);
如果摄像机是固定的,那么我们可以认为场景(背景)大多数情况下是不变的,而只有前景(被跟踪的目标)会运动,这样就可以建立背景模型。通过比较当前帧和背景模型,就能轻松地跟踪目标运动情况了。这里,最容易想到的比较方式就是当前帧减去背景模型了
将差分的图像二值化 这里创建了滑动条 bar
void threshold_track(int, void*)//这里就是定义的一个回调函数,里面是canny相关的操作
{threshold(subMat, bny_subMat, sub_threshold, 255, CV_THRESH_BINARY);imshow("Result", bny_subMat);
}
运用了高斯差分 因为本身图像的点都符合高斯分布,收光照等等影响,而这些都不能被考虑进移动物
int nBg = 200; cap >> frame;cvtColor(frame, frame, COLOR_BGR2GRAY);if (cnt <= nBg) {srcMats.push_back(frame);if (cnt == 0) {std::cout << "--- reading frame --- " << std::endl;}else {std::cout << "-";if (cnt % 50 == 0)std::cout << std::endl;}}
这里是前200张帧是为了获取高斯分布
计算图像的平均值和方差(灰度)
int calcGaussianBackground(std::vector<cv::Mat> srcMats, cv::Mat& meanMat, cv::Mat& varMat)
{int rows = srcMats[0].rows;int cols = srcMats[0].cols;for (int h = 0; h < rows; h++){for (int w = 0; w < cols; w++){int sum = 0;float var = 0;//求均值for (int i = 0; i < srcMats.size(); i++) {sum += srcMats[i].at<uchar>(h, w);}meanMat.at<uchar>(h, w) = (uchar)(sum / srcMats.size());//求方差for (int i = 0; i < srcMats.size(); i++) {var += (float)pow((srcMats[i].at<uchar>(h, w) - meanMat.at<uchar>(h, w)), 2);}varMat.at<float>(h, w) = var / srcMats.size();}}return 0;
}
利用平均值和方差来判断是否是入侵背景的前景
int gaussianThreshold(cv::Mat srcMat, cv::Mat meanMat, cv::Mat varMat, float weight, cv::Mat& dstMat)
{int rows = srcMat.rows;int cols = srcMat.cols;for (int h = 0; h < rows; h++){for (int w = 0; w < cols; w++){int dif = abs(srcMat.at<uchar>(h, w) - meanMat.at<uchar>(h, w));int th = (int)(weight * varMat.at<float>(h, w));if (dif > th) {dstMat.at<uchar>(h, w) = 255;}else {dstMat.at<uchar>(h, w) = 0;}}}return 0;
}
这里的weight是权重,可以代表差异到什么程度就是前景
完整代码:
VideoCapture cap(0);std::vector<cv::Mat> srcMats;int nBg = 200; float wVar = 3;int cnt = 0;bool calcModel = true;cv::Mat frame;cv::Mat meanMat;cv::Mat varMat;cv::Mat dstMat;while (1){cap >> frame;cvtColor(frame, frame, COLOR_BGR2GRAY);if (cnt <= nBg) {srcMats.push_back(frame);if (cnt == 0) {std::cout << "--- reading frame --- " << std::endl;}else {std::cout << "-";if (cnt % 50 == 0)std::cout << std::endl;}}else {if (calcModel) {std::cout << std::endl << "calculating background models" << std::endl;//计算模型meanMat.create(frame.size(), CV_8UC1);varMat.create(frame.size(), CV_32FC1);//调用计算模型函数calcGaussianBackground(srcMats, meanMat, varMat);}calcModel = false;//背景差分dstMat.create(frame.size(), CV_8UC1);//利用均值mat和方差mat,计算差分gaussianThreshold(frame, meanMat, varMat, wVar, dstMat);imshow("result", dstMat);imshow("frame", frame);}if (waitKey(30) == 27) {destroyAllWindows();break;}cnt++;}
opencv自带的背景差分方式
// OPENCV的自带背景差分方式VideoCapture cap(0); Mat inputFrame, frame, foregroundMask, foreground, background;int method = 0;Ptr<BackgroundSubtractor> model;if (method == 0) {model = createBackgroundSubtractorKNN();}else if (method == 1) {model = createBackgroundSubtractorMOG2();}else {cout << "Can not create background model using provided method: '" << method << "'" << endl;}bool doUpdateModel = true;bool doSmoothMask = false;while (1) {cap >> frame;model->apply(frame, foregroundMask, doUpdateModel ? -1 : 0);imshow("image", frame);if (doSmoothMask){GaussianBlur(foregroundMask, foregroundMask, Size(11, 11), 3.5, 3.5);threshold(foregroundMask, foregroundMask, 10, 255, THRESH_BINARY);}if (foreground.empty())foreground.create(frame.size(), frame.type());foreground = Scalar::all(0);frame.copyTo(foreground, foregroundMask);imshow("foreground mask", foregroundMask);imshow("foreground image", foreground);model->getBackgroundImage(background);if (!background.empty())imshow("mean background image", background);const char key = (char)waitKey(30);if (key == 27 || key == 'q') // ESC{cout << "Exit requested" << endl;break;}else if (key == ' '){doUpdateModel = !doUpdateModel;cout << "Toggle background update: " << (doUpdateModel ? "ON" : "OFF") << endl;}else if (key == 's'){doSmoothMask = !doSmoothMask;cout << "Toggle foreground mask smoothing: " << (doSmoothMask ? "ON" : "OFF") << endl;}}return 0;
}
S是是否平滑 会用高斯滤波来平滑图像
空格是是否更新背景
目前不是太懂这里的代码 希望后续学到这里后会明白
相关文章:
OPENCV C++(十一)
鼠标响应函数 //鼠标响应函数 void on_mouse(int EVENT, int x, int y, int flags, void* userdata) {Mat hh;hh *(Mat*)userdata;switch (EVENT){case EVENT_LBUTTONDOWN:{vP.x x;vP.y y;drawMarker(hh, vP, Scalar(255, 255, 255));//circle(hh, vP, 4, cvScalar(255, 255…...
ES使用心得
客户端 Transport Client已经快要废弃了,官方推荐使用High Level REST Client。 常用命令 启停 systemctl start elasticsearch systemctl stop elasticsearch节点状态 curl http://myservice1:9200/_cat/nodes?vip heap.percent ram.percent cpu l…...
Stable Diffusion - 幻想 (Fantasy) 风格与糖果世界 (Candy Land) 人物提示词配置
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/132212193 图像由 DreamShaper8 模型生成,融合糖果世界。 幻想 (Fantasy) 风格图像是一种以想象力为主导的艺术形式,创造了…...
部署K8S集群
目录 一、环境搭建 1、准备环境 2、安装master节点 3、安装k8s-master上的node 4、安装配置k8s-node1节点 5、安装k8s-node2节点 6、为所有node节点配置flannel网络 7、配置docker开启加载防火墙规则允许转发数据 二、k8s常用资源管理 1、创建一个pod 2、pod管理 一、…...
在时间和频率域中准确地测量太阳黑子活动及使用信号处理工具箱(TM)生成广泛的波形,如正弦波、方波等研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
一百五十四、Kettle——Linux上安装Kettle9.3(踩坑,亲测有效,附截图)
一、目的 由于kettle8.2在Linux上安装后,共享资源库创建遇到一系列问题,所以就换成kettle9.3 二、kettle版本以及安装包网盘链接 kettle9.3.0安装包网盘链接 链接:https://pan.baidu.com/s/1MS8QBhv9ukpqlVQKEMMHQA?pwddqm0 提取码&…...
PackageNotFoundError: No package metadata was found for bitsandbytes解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…...
uni-app和springboot完成前端后端对称加密解密流程
概述 使用对称加密的方式实现。前端基于crypto-js。uni-app框架中是在uni.request的基础上,在拦截器中处理的。springboot在Filter中完成解密工作。 uni-app 项目中引入crypto-js。 npm install crypto-js加密方法 const SECRET_KEY CryptoJS.enc.Utf8.parse(…...
【Unity造轮子】制作一个简单的2d抓勾效果(类似蜘蛛侠的技能)
前言 欢迎阅读本文,本文将向您介绍如何使用Unity游戏引擎来实现一个简单而有趣的2D抓勾效果,类似于蜘蛛侠的独特能力。抓勾效果是许多动作游戏和平台游戏中的常见元素,给玩家带来了无限的想象和挑战。 不需要担心,即使您是一…...
Unity 人物连招(三段连击)
一: 连招思路 首先人物角色上有三个攻击实例对象 Damage,每一个damage定义了攻击的伤害值,攻击距离,触发器名称,伤害的发起者,攻击持续时间,攻击重置时间,伤害的碰撞框大小等字段: …...
关于WSL以及docker连接adb的坑
结论 WSL可以连接到adb,需要和主机保持一致的adb型号。主机是windows还是macOS的docker没法直接连接到adb设备,只有主机为Linux才可以。其他平台只能通过TCP网络协议。 具体过程 关于WSL连接adb设备 windows安装adb工具(安装可以去官网下…...
python安装第三方包时报错:...\lib\site-packages\pip\_vendor\urllib3\response.py...
安装redis第三方包: pip install redis报错现象: 解决方法:使用以下命令可成功安装 pip install redis -i http://pypi.douban.com/simple --trusted-host pypi.douban.com...
腾讯云从业者认证考试考点——云存储产品
文章目录 存储产品功能云存储产品概述存储产品存储网关存储服务 存储分类按存储方式分按存储频率分 云存储与传统存储的区别功能需求性能需求容量扩展数据共享 云硬盘CBS产品概述归档存储和文件存储归档存储CAS文件存储CFS 对象存储存储网关存储网关的分类 云数据迁移CDM日志服…...
猿辅导Motiff与IXDC达成战略合作,将在UI设计领域推动AI革新更多可能性
近日,“IXDC 2023国际体验设计大会”在北京国家会议中心拉开序幕,3000设计师、1000企业、200全球商业领袖,共襄为期5天的用户体验创新盛会。据了解,此次大会是以“设计领导力”为主题,分享全球设计、科技、商业的前沿趋…...
条件操作符(三目操作符)
比如之前我们想写一个条件判断表达式是这样写的: 用操作符就可以这样写: 应用,比如求两个数的最大值...
(五)Unity开发Vision Pro——FAQ
常见问题 (FAQ) 1.问:我看到在visionOS 模拟器中运行的结果与在硬件上运行的结果不同 请注意,在模拟器中运行时,某些特定于硬件的功能不可用 - 最明显的是 AR 数据。这可能意味着 VisionOS 模拟器中的模拟结果可能与 Vision Pro 耳机上的模…...
GitOps 与 DevOps:了解关键差异,为企业做出最佳选择
在软件开发领域,GitOps 和 DevOps 是加强协作和实现软件交付流程自动化的重要技术。虽然这两种模式都旨在提高软件开发生命周期的效率,但它们的核心原则和实施方式却各不相同。 本篇文章将帮助您了解 GitOps 和 DevOps 之间的差异、它们的工作流程&am…...
Java实现Word文档转PDF,PDF转Word,PDF转Excel,PDF转换工具
前言 java实现word文档转PDF,PDF转word 解决只能转换4页问题 解决每页头部存在水印问题 实现 引入依赖 <dependency><groupId>com.documents4j</groupId><artifactId>documents4j-local</artifactId><version>1.0.3</ve…...
Docker部署ES服务,全量同步的时候内存爆炸,ES自动关闭,CPU100%
问题 使用canal-adapter全量同步(参考Canal Adapter1.1.5版本API操作服务,手动同步数据(4))的时候 小批量数据可以正常运行(几千条)只要数据量一大(上万条),…...
Python——添加照片边框
原图: 添加边框后: 添加边框会读取照片的exif信息如时间、相机型号、品牌以及快门焦段等信息,将他们显示在下面的边框中。 获取当前py文件路径 import os #get path that py file located def Get_Currentpath():file_path os.path.abspa…...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...
Caliper 配置文件解析:fisco-bcos.json
config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...
在 Spring Boot 项目里,MYSQL中json类型字段使用
前言: 因为程序特殊需求导致,需要mysql数据库存储json类型数据,因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...
shell脚本质数判断
shell脚本质数判断 shell输入一个正整数,判断是否为质数(素数)shell求1-100内的质数shell求给定数组输出其中的质数 shell输入一个正整数,判断是否为质数(素数) 思路: 1:1 2:1 2 3:1 2 3 4:1 2 3 4 5:1 2 3 4 5-------> 3:2 4:2 3 5:2 3…...
6.9本日总结
一、英语 复习默写list11list18,订正07年第3篇阅读 二、数学 学习线代第一讲,写15讲课后题 三、408 学习计组第二章,写计组习题 四、总结 明天结束线代第一章和计组第二章 五、明日计划 英语:复习l默写sit12list17&#…...
用 FFmpeg 实现 RTMP 推流直播
RTMP(Real-Time Messaging Protocol) 是直播行业中常用的传输协议。 一般来说,直播服务商会给你: ✅ 一个 RTMP 推流地址(你推视频上去) ✅ 一个 HLS 或 FLV 拉流地址(观众观看用)…...
