当前位置: 首页 > news >正文

【量化课程】02_4.数理统计的基本概念

2.4_数理统计的基本概念

数理统计思维导图

在这里插入图片描述

更多详细内容见notebook

1.基本概念

总体:研究对象的全体,它是一个随机变量,用 X X X表示。

个体:组成总体的每个基本元素。

简单随机样本:来自总体 X X X n n n个相互独立且与总体同分布的随机变量 X 1 , X 2 ⋯ , X n X_{1},X_{2}\cdots,X_{n} X1,X2,Xn,称为容量为 n n n的简单随机样本,简称样本。

统计量:设 X 1 , X 2 ⋯ , X n , X_{1},X_{2}\cdots,X_{n}, X1,X2,Xn,是来自总体 X X X的一个样本, g ( X 1 , X 2 ⋯ , X n ) g(X_{1},X_{2}\cdots,X_{n}) g(X1,X2,Xn))是样本的连续函数,且 g ( ) g() g()中不含任何未知参数,则称 g ( X 1 , X 2 ⋯ , X n ) g(X_{1},X_{2}\cdots,X_{n}) g(X1,X2,Xn)为统计量。

样本均值
X ‾ = 1 n ∑ i = 1 n X i \overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i} X=n1i=1nXi
样本方差 S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{2} S2=n11i=1n(XiX)2

样本矩:样本 k k k阶原点矩: A k = 1 n ∑ i = 1 n X i k , k = 1 , 2 , ⋯ A_{k} = \frac{1}{n}\sum_{i = 1}^{n}X_{i}^{k},k = 1,2,\cdots Ak=n1i=1nXik,k=1,2,

样本 k k k阶中心矩 B k = 1 n ∑ i = 1 n ( X i − X ‾ ) k , k = 1 , 2 , ⋯ B_{k} = \frac{1}{n}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{k},k = 1,2,\cdots Bk=n1i=1n(XiX)k,k=1,2,

2.分布

χ 2 \chi^{2} χ2分布 χ 2 = X 1 2 + X 2 2 + ⋯ + X n 2 ∼ χ 2 ( n ) \chi^{2} = X_{1}^{2} + X_{2}^{2} + \cdots + X_{n}^{2}\sim\chi^{2}(n) χ2=X12+X22++Xn2χ2(n),其中 X 1 , X 2 ⋯ , X n , X_{1},X_{2}\cdots,X_{n}, X1,X2,Xn,相互独立,且同服从 N ( 0 , 1 ) N(0,1) N(0,1)

t t t分布 T = X Y / n ∼ t ( n ) T = \frac{X}{\sqrt{Y/n}}\sim t(n) T=Y/n Xt(n) ,其中 X ∼ N ( 0 , 1 ) , Y ∼ χ 2 ( n ) , X\sim N\left( 0,1 \right),Y\sim\chi^{2}(n), XN(0,1),Yχ2(n), X X X Y Y Y 相互独立。

F F F分布 F = X / n 1 Y / n 2 ∼ F ( n 1 , n 2 ) F = \frac{X/n_{1}}{Y/n_{2}}\sim F(n_{1},n_{2}) F=Y/n2X/n1F(n1,n2),其中 X ∼ χ 2 ( n 1 ) , Y ∼ χ 2 ( n 2 ) , X\sim\chi^{2}\left( n_{1} \right),Y\sim\chi^{2}(n_{2}), Xχ2(n1),Yχ2(n2), X X X Y Y Y相互独立。

分位数:若 P ( X ≤ x α ) = α , P(X \leq x_{\alpha}) = \alpha, P(Xxα)=α,则称 x α x_{\alpha} xα X X X α \alpha α分位数

3.正态总体的常用样本分布

X 1 , X 2 ⋯ , X n X_{1},X_{2}\cdots,X_{n} X1,X2,Xn为来自正态总体 N ( μ , σ 2 ) N(\mu,\sigma^{2}) N(μ,σ2)的样本, X ‾ = 1 n ∑ i = 1 n X i , S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 , \overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i},S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2},} X=n1i=1nXi,S2=n11i=1n(XiX)2,则:

(1) X ‾ ∼ N ( μ , σ 2 n ) \overline{X}\sim N\left( \mu,\frac{\sigma^{2}}{n} \right){\ \ } XN(μ,nσ2)  或者 X ‾ − μ σ n ∼ N ( 0 , 1 ) \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}\sim N(0,1) n σXμN(0,1)

(2) ( n − 1 ) S 2 σ 2 = 1 σ 2 ∑ i = 1 n ( X i − X ‾ ) 2 ∼ χ 2 ( n − 1 ) \frac{(n - 1)S^{2}}{\sigma^{2}} = \frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2}\sim\chi^{2}(n - 1)} σ2(n1)S2=σ21i=1n(XiX)2χ2(n1)

(3) 1 σ 2 ∑ i = 1 n ( X i − μ ) 2 ∼ χ 2 ( n ) \frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \mu)}^{2}\sim\chi^{2}(n)} σ21i=1n(Xiμ)2χ2(n)

(4) X ‾ − μ S / n ∼ t ( n − 1 ) {\ \ }\frac{\overline{X} - \mu}{S/\sqrt{n}}\sim t(n - 1)   S/n Xμt(n1)

4.重要公式与结论

(1) 对于 χ 2 ∼ χ 2 ( n ) \chi^{2}\sim\chi^{2}(n) χ2χ2(n),有 E ( χ 2 ( n ) ) = n , D ( χ 2 ( n ) ) = 2 n ; E(\chi^{2}(n)) = n,D(\chi^{2}(n)) = 2n; E(χ2(n))=n,D(χ2(n))=2n;

(2) 对于 T ∼ t ( n ) T\sim t(n) Tt(n),有 E ( T ) = 0 , D ( T ) = n n − 2 ( n > 2 ) E(T) = 0,D(T) = \frac{n}{n - 2}(n > 2) E(T)=0,D(T)=n2n(n>2)

(3) 对于 F ~ F ( m , n ) F\tilde{\ }F(m,n) F ~F(m,n),有 1 F ∼ F ( n , m ) , F a / 2 ( m , n ) = 1 F 1 − a / 2 ( n , m ) ; \frac{1}{F}\sim F(n,m),F_{a/2}(m,n) = \frac{1}{F_{1 - a/2}(n,m)}; F1F(n,m),Fa/2(m,n)=F1a/2(n,m)1;

(4) 对于任意总体 X X X,有 E ( X ‾ ) = E ( X ) , E ( S 2 ) = D ( X ) , D ( X ‾ ) = D ( X ) n E(\overline{X}) = E(X),E(S^{2}) = D(X),D(\overline{X}) = \frac{D(X)}{n} E(X)=E(X),E(S2)=D(X),D(X)=nD(X)

相关文章:

【量化课程】02_4.数理统计的基本概念

2.4_数理统计的基本概念 数理统计思维导图 更多详细内容见notebook 1.基本概念 总体:研究对象的全体,它是一个随机变量,用 X X X表示。 个体:组成总体的每个基本元素。 简单随机样本:来自总体 X X X的 n n n个相互…...

【计算机视觉|生成对抗】改进的生成对抗网络(GANs)训练技术

本系列博文为深度学习/计算机视觉论文笔记,转载请注明出处 标题:Improved Techniques for Training GANs 链接:[1606.03498v1] Improved Techniques for Training GANs (arxiv.org) 摘要 本文介绍了一系列应用于生成对抗网络(G…...

SQLyog中导入CSV文件入库到MySQL中

1.在数据库中新建一个表,设置列名(与待导入文件一致),字段可以多出几个都可以 2.右键表名,导入- - >导入使用本地加载的CSV数据 选择使用加载本地CVS数据 3.指定好转义字符,将终止设置为,号(英文状态下…...

Spring Security6 最新版配置该怎么写,该如何实现动态权限管理

Spring Security 在最近几个版本中配置的写法都有一些变化,很多常见的方法都废弃了,并且将在未来的 Spring Security7 中移除,因此又补充了一些新的内容,重新发一下,供各位使用 Spring Security 的小伙伴们参考。 接下…...

CommandLineRunner 和 ApplicationRunner 用于Spring Boot 应用启动后执行特定逻辑

CommandLineRunner 和 ApplicationRunner 都是 Spring Boot 中用于在应用启动后执行特定逻辑的接口。它们的主要区别在于传递的参数类型和执行顺序。下面我将为您详细解释它们的用途、使用案例以及执行顺序。 CommandLineRunner CommandLineRunner 是一个接口,它有…...

一、Dubbo 简介与架构

一、Dubbo 简介与架构 1.1 应用架构演进过程 单体应用:JEE、MVC分布式应用:SOA、微服务化 1.2 Dubbo 简介一种分布式 RPC 框架,对专业知识(序列化/反序列化、网络、多线程、设计模式、性能优化等)进行了更高层的抽象和…...

软考:中级软件设计师:文件管理,索引文件结构,树型文件结构,位示图,数据传输方式,微内核

软考:中级软件设计师: 提示:系列被面试官问的问题,我自己当时不会,所以下来自己复盘一下,认真学习和总结,以应对未来更多的可能性 关于互联网大厂的笔试面试,都是需要细心准备的 (1…...

实践-CNN卷积层

实践-CNN卷积层 1 卷积层构造2 整体流程3 BatchNormalization效果4 参数对比5 测试效果 1 卷积层构造 2 整体流程 根据网络结构来写就可以了。 池化 拉平 训练一个网络需要2-3天的时间。用经典网络来,一些细节没有必要去扣。 损失函数: fit模型&…...

【设计模式】MVC 模式

MVC 模式代表 Model-View-Controller(模型-视图-控制器) 模式。这种模式用于应用程序的分层开发。 Model(模型) - 模型代表一个存取数据的对象或 JAVA POJO。它也可以带有逻辑,在数据变化时更新控制器。View&#xff…...

看康师傅金桔柠檬X国漫IP跨界出圈,打开IP合作新思路

Z世代年轻群体已经成为消费主力,其喜好和消费观念也呈现出全新态势。抓住年轻人的心,就是抓住了品牌未来的战场。 那么到底什么样的营销动作才能真正撬动年轻人? 对于互联网时代成长起来的Z世代年轻人来说,人气二次元IP无疑是能最…...

ElementUI的MessageBox的按钮置灰且不可点击

// this.$confirmthis.$alert(这是一段内容, 标题名称, {confirmButtonText: 确定,confirmButtonCLass: confirmButton,beforeClose: (action,instance,done) > {if (action confirm) {return false} else {done()}});}.confirmButton {background: #ccc !important;cursor…...

pc端与flutter通信失效, Method not found

报错情况描述:pc端与flutter通信,ios端能实现通信,安卓端通信报错 报错通信代码: //app消息通知window.callbackName function (res) {window?.jsBridge && window.jsBridge?.postMessage(JSON.stringify(res), "…...

linux 防火墙经常使用的命令

# 开启防火墙服务 systemctl start firewalld # 关闭防火墙服务 systemctl stop firewalld # 重启防火墙服务 systemctl restart firewalld # 开发端口 firewall-cmd --zonepublic --add-port8080/tcp --permanent # 移除端口 firewall-cmd --zonepublic --remove-port8080/tc…...

Docker desktop安装mysql

首先本地已经有 docker 环境存在,然后可以拉取 MySQL 镜像。 相关 mysql 仓库地址: https://hub.docker.com/_/mysql/ # 镜像拉取 docker pull mysql:8.0.26docker pull mysql:latest# 查看镜像列表docker image ls等待镜像完成之后就可以启动 mysql 了…...

Java SpringBoot Vue ERP系统

系统介绍 该ERP系统基于SpringBoot框架和SaaS模式,支持多租户,专注进销存财务生产功能。主要模块有零售管理、采购管理、销售管理、仓库管理、财务管理、报表查询、系统管理等。支持预付款、收入支出、仓库调拨、组装拆卸、订单等特色功能。拥有商品库存…...

什么是CSS中的渐变(gradient)?如何使用CSS创建线性渐变和径向渐变?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 渐变(Gradient)在CSS中的应用⭐ 线性渐变(Linear Gradient)语法:示例: ⭐ 径向渐变(Radial Gradient)语法:示例: ⭐ 写…...

【深度学习】PyTorch快速入门

【深度学习】学习PyTorch基础 介绍PyTorch 深度学习框架是一种软件工具,旨在简化和加速构建、训练和部署深度学习模型的过程。深度学习框架提供了一系列的函数、类和工具,用于定义、优化和执行各种深度神经网络模型。这些框架帮助研究人员和开发人员专注…...

学习Vue:组件通信

组件化开发在现代前端开发中是一种关键的方法,它能够将复杂的应用程序拆分为更小、更可管理的独立组件。在Vue.js中,父子组件通信是组件化开发中的重要概念,同时我们还会讨论其他组件间通信的方式。 父子组件通信:Props 和 Events…...

springboot项目打包后读取jar包里面的

ResourcePatternResolver resourcePatternResolver new PathMatchingResourcePatternResolver(); Resource[] resources resourcePatternResolver.getResources("classpath*:templates/*.*"); for ( Resource resource : resources ) {//获取文件,在打成…...

设计模式之七大原则

👑单一职责原则 单一职责原则告诉我们一个类应该只有一个责任或者只负责一件事情。 想象一下,如果一个类承担了太多的责任,就像一个人同时负责做饭、洗衣服和打扫卫生一样,那么这个类会变得非常复杂,难以理解和维护。而…...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中,明确沟通敏捷转型目的尤为关键,团队成员只有清晰理解转型背后的原因和利益,才能降低对变化的…...

什么是VR全景技术

VR全景技术,全称为虚拟现实全景技术,是通过计算机图像模拟生成三维空间中的虚拟世界,使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验,结合图文、3D、音视频等多媒体元素…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...