【量化课程】02_4.数理统计的基本概念
2.4_数理统计的基本概念
数理统计思维导图
更多详细内容见notebook
1.基本概念
总体:研究对象的全体,它是一个随机变量,用 X X X表示。
个体:组成总体的每个基本元素。
简单随机样本:来自总体 X X X的 n n n个相互独立且与总体同分布的随机变量 X 1 , X 2 ⋯ , X n X_{1},X_{2}\cdots,X_{n} X1,X2⋯,Xn,称为容量为 n n n的简单随机样本,简称样本。
统计量:设 X 1 , X 2 ⋯ , X n , X_{1},X_{2}\cdots,X_{n}, X1,X2⋯,Xn,是来自总体 X X X的一个样本, g ( X 1 , X 2 ⋯ , X n ) g(X_{1},X_{2}\cdots,X_{n}) g(X1,X2⋯,Xn))是样本的连续函数,且 g ( ) g() g()中不含任何未知参数,则称 g ( X 1 , X 2 ⋯ , X n ) g(X_{1},X_{2}\cdots,X_{n}) g(X1,X2⋯,Xn)为统计量。
样本均值:
X ‾ = 1 n ∑ i = 1 n X i \overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i} X=n1∑i=1nXi
样本方差: S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{2} S2=n−11∑i=1n(Xi−X)2
样本矩:样本 k k k阶原点矩: A k = 1 n ∑ i = 1 n X i k , k = 1 , 2 , ⋯ A_{k} = \frac{1}{n}\sum_{i = 1}^{n}X_{i}^{k},k = 1,2,\cdots Ak=n1∑i=1nXik,k=1,2,⋯
样本 k k k阶中心矩: B k = 1 n ∑ i = 1 n ( X i − X ‾ ) k , k = 1 , 2 , ⋯ B_{k} = \frac{1}{n}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{k},k = 1,2,\cdots Bk=n1∑i=1n(Xi−X)k,k=1,2,⋯
2.分布
χ 2 \chi^{2} χ2分布: χ 2 = X 1 2 + X 2 2 + ⋯ + X n 2 ∼ χ 2 ( n ) \chi^{2} = X_{1}^{2} + X_{2}^{2} + \cdots + X_{n}^{2}\sim\chi^{2}(n) χ2=X12+X22+⋯+Xn2∼χ2(n),其中 X 1 , X 2 ⋯ , X n , X_{1},X_{2}\cdots,X_{n}, X1,X2⋯,Xn,相互独立,且同服从 N ( 0 , 1 ) N(0,1) N(0,1)
t t t分布: T = X Y / n ∼ t ( n ) T = \frac{X}{\sqrt{Y/n}}\sim t(n) T=Y/nX∼t(n) ,其中 X ∼ N ( 0 , 1 ) , Y ∼ χ 2 ( n ) , X\sim N\left( 0,1 \right),Y\sim\chi^{2}(n), X∼N(0,1),Y∼χ2(n),且 X X X, Y Y Y 相互独立。
F F F分布: F = X / n 1 Y / n 2 ∼ F ( n 1 , n 2 ) F = \frac{X/n_{1}}{Y/n_{2}}\sim F(n_{1},n_{2}) F=Y/n2X/n1∼F(n1,n2),其中 X ∼ χ 2 ( n 1 ) , Y ∼ χ 2 ( n 2 ) , X\sim\chi^{2}\left( n_{1} \right),Y\sim\chi^{2}(n_{2}), X∼χ2(n1),Y∼χ2(n2),且 X X X, Y Y Y相互独立。
分位数:若 P ( X ≤ x α ) = α , P(X \leq x_{\alpha}) = \alpha, P(X≤xα)=α,则称 x α x_{\alpha} xα为 X X X的 α \alpha α分位数
3.正态总体的常用样本分布
设 X 1 , X 2 ⋯ , X n X_{1},X_{2}\cdots,X_{n} X1,X2⋯,Xn为来自正态总体 N ( μ , σ 2 ) N(\mu,\sigma^{2}) N(μ,σ2)的样本, X ‾ = 1 n ∑ i = 1 n X i , S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 , \overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i},S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2},} X=n1∑i=1nXi,S2=n−11∑i=1n(Xi−X)2,则:
(1) X ‾ ∼ N ( μ , σ 2 n ) \overline{X}\sim N\left( \mu,\frac{\sigma^{2}}{n} \right){\ \ } X∼N(μ,nσ2) 或者 X ‾ − μ σ n ∼ N ( 0 , 1 ) \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}\sim N(0,1) nσX−μ∼N(0,1)
(2) ( n − 1 ) S 2 σ 2 = 1 σ 2 ∑ i = 1 n ( X i − X ‾ ) 2 ∼ χ 2 ( n − 1 ) \frac{(n - 1)S^{2}}{\sigma^{2}} = \frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2}\sim\chi^{2}(n - 1)} σ2(n−1)S2=σ21∑i=1n(Xi−X)2∼χ2(n−1)
(3) 1 σ 2 ∑ i = 1 n ( X i − μ ) 2 ∼ χ 2 ( n ) \frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \mu)}^{2}\sim\chi^{2}(n)} σ21∑i=1n(Xi−μ)2∼χ2(n)
(4) X ‾ − μ S / n ∼ t ( n − 1 ) {\ \ }\frac{\overline{X} - \mu}{S/\sqrt{n}}\sim t(n - 1) S/nX−μ∼t(n−1)
4.重要公式与结论
(1) 对于 χ 2 ∼ χ 2 ( n ) \chi^{2}\sim\chi^{2}(n) χ2∼χ2(n),有 E ( χ 2 ( n ) ) = n , D ( χ 2 ( n ) ) = 2 n ; E(\chi^{2}(n)) = n,D(\chi^{2}(n)) = 2n; E(χ2(n))=n,D(χ2(n))=2n;
(2) 对于 T ∼ t ( n ) T\sim t(n) T∼t(n),有 E ( T ) = 0 , D ( T ) = n n − 2 ( n > 2 ) E(T) = 0,D(T) = \frac{n}{n - 2}(n > 2) E(T)=0,D(T)=n−2n(n>2);
(3) 对于 F ~ F ( m , n ) F\tilde{\ }F(m,n) F ~F(m,n),有 1 F ∼ F ( n , m ) , F a / 2 ( m , n ) = 1 F 1 − a / 2 ( n , m ) ; \frac{1}{F}\sim F(n,m),F_{a/2}(m,n) = \frac{1}{F_{1 - a/2}(n,m)}; F1∼F(n,m),Fa/2(m,n)=F1−a/2(n,m)1;
(4) 对于任意总体 X X X,有 E ( X ‾ ) = E ( X ) , E ( S 2 ) = D ( X ) , D ( X ‾ ) = D ( X ) n E(\overline{X}) = E(X),E(S^{2}) = D(X),D(\overline{X}) = \frac{D(X)}{n} E(X)=E(X),E(S2)=D(X),D(X)=nD(X)
相关文章:

【量化课程】02_4.数理统计的基本概念
2.4_数理统计的基本概念 数理统计思维导图 更多详细内容见notebook 1.基本概念 总体:研究对象的全体,它是一个随机变量,用 X X X表示。 个体:组成总体的每个基本元素。 简单随机样本:来自总体 X X X的 n n n个相互…...

【计算机视觉|生成对抗】改进的生成对抗网络(GANs)训练技术
本系列博文为深度学习/计算机视觉论文笔记,转载请注明出处 标题:Improved Techniques for Training GANs 链接:[1606.03498v1] Improved Techniques for Training GANs (arxiv.org) 摘要 本文介绍了一系列应用于生成对抗网络(G…...

SQLyog中导入CSV文件入库到MySQL中
1.在数据库中新建一个表,设置列名(与待导入文件一致),字段可以多出几个都可以 2.右键表名,导入- - >导入使用本地加载的CSV数据 选择使用加载本地CVS数据 3.指定好转义字符,将终止设置为,号(英文状态下…...

Spring Security6 最新版配置该怎么写,该如何实现动态权限管理
Spring Security 在最近几个版本中配置的写法都有一些变化,很多常见的方法都废弃了,并且将在未来的 Spring Security7 中移除,因此又补充了一些新的内容,重新发一下,供各位使用 Spring Security 的小伙伴们参考。 接下…...
CommandLineRunner 和 ApplicationRunner 用于Spring Boot 应用启动后执行特定逻辑
CommandLineRunner 和 ApplicationRunner 都是 Spring Boot 中用于在应用启动后执行特定逻辑的接口。它们的主要区别在于传递的参数类型和执行顺序。下面我将为您详细解释它们的用途、使用案例以及执行顺序。 CommandLineRunner CommandLineRunner 是一个接口,它有…...

一、Dubbo 简介与架构
一、Dubbo 简介与架构 1.1 应用架构演进过程 单体应用:JEE、MVC分布式应用:SOA、微服务化 1.2 Dubbo 简介一种分布式 RPC 框架,对专业知识(序列化/反序列化、网络、多线程、设计模式、性能优化等)进行了更高层的抽象和…...

软考:中级软件设计师:文件管理,索引文件结构,树型文件结构,位示图,数据传输方式,微内核
软考:中级软件设计师: 提示:系列被面试官问的问题,我自己当时不会,所以下来自己复盘一下,认真学习和总结,以应对未来更多的可能性 关于互联网大厂的笔试面试,都是需要细心准备的 (1…...

实践-CNN卷积层
实践-CNN卷积层 1 卷积层构造2 整体流程3 BatchNormalization效果4 参数对比5 测试效果 1 卷积层构造 2 整体流程 根据网络结构来写就可以了。 池化 拉平 训练一个网络需要2-3天的时间。用经典网络来,一些细节没有必要去扣。 损失函数: fit模型&…...
【设计模式】MVC 模式
MVC 模式代表 Model-View-Controller(模型-视图-控制器) 模式。这种模式用于应用程序的分层开发。 Model(模型) - 模型代表一个存取数据的对象或 JAVA POJO。它也可以带有逻辑,在数据变化时更新控制器。Viewÿ…...

看康师傅金桔柠檬X国漫IP跨界出圈,打开IP合作新思路
Z世代年轻群体已经成为消费主力,其喜好和消费观念也呈现出全新态势。抓住年轻人的心,就是抓住了品牌未来的战场。 那么到底什么样的营销动作才能真正撬动年轻人? 对于互联网时代成长起来的Z世代年轻人来说,人气二次元IP无疑是能最…...

ElementUI的MessageBox的按钮置灰且不可点击
// this.$confirmthis.$alert(这是一段内容, 标题名称, {confirmButtonText: 确定,confirmButtonCLass: confirmButton,beforeClose: (action,instance,done) > {if (action confirm) {return false} else {done()}});}.confirmButton {background: #ccc !important;cursor…...

pc端与flutter通信失效, Method not found
报错情况描述:pc端与flutter通信,ios端能实现通信,安卓端通信报错 报错通信代码: //app消息通知window.callbackName function (res) {window?.jsBridge && window.jsBridge?.postMessage(JSON.stringify(res), "…...
linux 防火墙经常使用的命令
# 开启防火墙服务 systemctl start firewalld # 关闭防火墙服务 systemctl stop firewalld # 重启防火墙服务 systemctl restart firewalld # 开发端口 firewall-cmd --zonepublic --add-port8080/tcp --permanent # 移除端口 firewall-cmd --zonepublic --remove-port8080/tc…...
Docker desktop安装mysql
首先本地已经有 docker 环境存在,然后可以拉取 MySQL 镜像。 相关 mysql 仓库地址: https://hub.docker.com/_/mysql/ # 镜像拉取 docker pull mysql:8.0.26docker pull mysql:latest# 查看镜像列表docker image ls等待镜像完成之后就可以启动 mysql 了…...

Java SpringBoot Vue ERP系统
系统介绍 该ERP系统基于SpringBoot框架和SaaS模式,支持多租户,专注进销存财务生产功能。主要模块有零售管理、采购管理、销售管理、仓库管理、财务管理、报表查询、系统管理等。支持预付款、收入支出、仓库调拨、组装拆卸、订单等特色功能。拥有商品库存…...

什么是CSS中的渐变(gradient)?如何使用CSS创建线性渐变和径向渐变?
聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 渐变(Gradient)在CSS中的应用⭐ 线性渐变(Linear Gradient)语法:示例: ⭐ 径向渐变(Radial Gradient)语法:示例: ⭐ 写…...

【深度学习】PyTorch快速入门
【深度学习】学习PyTorch基础 介绍PyTorch 深度学习框架是一种软件工具,旨在简化和加速构建、训练和部署深度学习模型的过程。深度学习框架提供了一系列的函数、类和工具,用于定义、优化和执行各种深度神经网络模型。这些框架帮助研究人员和开发人员专注…...
学习Vue:组件通信
组件化开发在现代前端开发中是一种关键的方法,它能够将复杂的应用程序拆分为更小、更可管理的独立组件。在Vue.js中,父子组件通信是组件化开发中的重要概念,同时我们还会讨论其他组件间通信的方式。 父子组件通信:Props 和 Events…...
springboot项目打包后读取jar包里面的
ResourcePatternResolver resourcePatternResolver new PathMatchingResourcePatternResolver(); Resource[] resources resourcePatternResolver.getResources("classpath*:templates/*.*"); for ( Resource resource : resources ) {//获取文件,在打成…...
设计模式之七大原则
👑单一职责原则 单一职责原则告诉我们一个类应该只有一个责任或者只负责一件事情。 想象一下,如果一个类承担了太多的责任,就像一个人同时负责做饭、洗衣服和打扫卫生一样,那么这个类会变得非常复杂,难以理解和维护。而…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...

ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...

【 java 虚拟机知识 第一篇 】
目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...
DAY 26 函数专题1
函数定义与参数知识点回顾:1. 函数的定义2. 变量作用域:局部变量和全局变量3. 函数的参数类型:位置参数、默认参数、不定参数4. 传递参数的手段:关键词参数5 题目1:计算圆的面积 任务: 编写一…...

如何在Windows本机安装Python并确保与Python.NET兼容
✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...