当前位置: 首页 > news >正文

CVPR 2023 | 用户可控的条件图像到视频生成方法(基于Diffusion)

注1:本文系“计算机视觉/三维重建论文速递”系列之一,致力于简洁清晰完整地介绍、解读计算机视觉,特别是三维重建领域最新的顶会/顶刊论文(包括但不限于 Nature/Science及其子刊; CVPR, ICCV, ECCV, NeurIPS, ICLR, ICML, TPAMI, IJCV 等)。
本次介绍的论文是: CVPR 2023 | 用户可控的条件图像到视频生成方法
文章DOI:
https://doi.org/10.48550/arXiv.2303.13744 ↗。

CVPR 2023 | 用户可控的条件图像到视频生成方法

在这里插入图片描述

1 引言

图像到视频(I2V)生成是计算机视觉领域一个迷人且富有潜力的研究课题。给定一张静态图像 x 0 x_0 x0和一个文本描述 y y y(例如“微笑”),条件图像到视频(cI2V)生成旨在合成出一个符合条件 y y y的新视频 x ^ _ 1 K \hat{x}\_1^K x^_1K。cI2V生成在艺术创作、娱乐产业以及机器学习的数据增广等方面都有巨大的应用前景。但是,cI2V生成面临的核心挑战在于如何同时生成符合图像 x 0 x_0 x0的视觉外观以及符合条件 y y y的时域动态

在这里插入图片描述

2 动机

以往的cI2V生成方法可以分为两大类:直接合成法无扭曲合成法

  • 直接合成法
    • 直接基于图像 x 0 x_0 x0和条件 y y y逐帧生成新的视频帧
    • 但是这类方法往往难以同时满足视觉细节的保真和时域连贯性
  • 无扭曲合成法
    • 先生成一系列扭曲场或光流,然后根据它们来扭曲或漂移图像 x 0 x_0 x0,从而合成新视频
    • 但是它们的扭曲场或光流生成往往依赖额外的监督信息,例如人体姿态。对于只给定图像 x 0 x_0 x0和简单文本条件 y y y的情况,无扭曲合成法效果仍有限。

本文提出一种称为潜在流弥散模型(LFDM)的新型cI2V生成框架,以弥补现有方法的不足。LFDM的核心创新在于,它首先基于条件 y y y在潜在空间中合成一个时域连贯的光流序列,然后用该光流序列来扭曲图像 x 0 x_0 x0,从而生成新视频。这种基于扭曲的生成方式可以更好地利用图像 x 0 x_0 x0所包含的视觉细节,同时满足条件 y y y要求的运动动力学。

3 方法

LFDM的生成流程如图1所示。它包含两个阶段的训练。

在这里插入图片描述
在这里插入图片描述

3.1 阶段一:潜在光流自动编码器

在阶段一中,我们用无标注视频训练一个潜在光流自动编码器(LFAE)。LFAE 包含编码器 Φ \Phi Φ、光流预测器 F F F和解码器 Ω \Omega Ω三个模块。给定一对来自同一视频的参考帧 x r e f x_{ref} xref和驱动帧 x d r i x_{dri} xdri,编码器 Φ \Phi Φ先把 x r e f x_{ref} xref编码为潜在空间的特征图 z z z,然后 F F F估计 x r e f x_{ref} xref x d r i x_{dri} xdri之间的逆向潜在空间光流 f f f f f f用于扭曲 z z z得到 z ~ \tilde{z} z~,最后 Ω \Omega Ω解码 z ~ \tilde{z} z~来重建 x d r i x_{dri} xdri。LFAE的训练目标是最小化重建损失。

3.2 阶段二:弥散模型

在阶段二中,我们训练一个基于3D U-Net的弥散模型(DM)来生成时域连贯的潜在光流序列。给定一段训练视频 x 0 K = x 0 , x 1 , . . . , x K x_0^K={x_0,x_1,...,x_K} x0K=x0,x1,...,xK和对应的标签 y y y,我们用阶段一训练好的 F F F来估计 x 0 x_0 x0到每个 x k x_k xk的光流 f k f_k fk。然后这些 f k f_k fk被DM以 y y y x 0 x_0 x0为条件,学习生成时域连贯的光流。相比像素空间或潜在特征空间,LFDM的DM只需要学习一个简单的低维光流空间,因此训练更高效。

4 实验和结果

我们在多个人脸表情、人体动作数据集上验证了LFDM的有效性。主要结论如下:

  • LFDM相比现有cI2V生成方法效果更好,可以同时保证视觉质量、时域连贯性和结果多样性。如图2所示,LFDM生成的视频质量明显优于对比方法。

  • LFDM可以轻松适配新域面部视频,只需要微调阶段一的解码器 O m e g a \\Omega Omega(图3)。这得益于LFDM分阶段的训练策略。

  • Ablation study表明,LFDM中DM的潜在光流空间维度低,计算量小,这有助于生成效率的提升(表1)。

在这里插入图片描述

图2. 不同方法的生成比较

在这里插入图片描述
在这里插入图片描述

图3. 微调 O m e g a \\Omega Omega后在新域人脸数据集的生成效果提升

表1. 不同方法的生成时间和空间复杂度比较

模型生成一段视频所需时间潜在空间维度
VDM112.5s40×64×64×3
LFDM36s40×32×32×3

5 不足和未来展望

尽管取得了一定进展,LFDM仍存在一些局限:

  • 当前仅支持单主体视频生成 。未来可以拓展至包含多个主体的光流预测。

  • 输入条件仅为类别标签,期望支持基于文本的控制信号。

  • 采样速度相比GAN慢 。可以探索一些快速采样策略以提升生成效率。

6 总结

本文提出了一种新型的基于潜在空间光流扭曲的条件图像到视频生成方法LFDM。

  • 它可以高质量地生成符合条件要求的新视频。
  • 分阶段的训练策略也使LFDM容易迁移到新域。
  • 实验结果表明LFDM优于多种先进对比方法。
  • 本文为条件视频生成任务提供了一种新的有效思路。

相关文章:

CVPR 2023 | 用户可控的条件图像到视频生成方法(基于Diffusion)

注1:本文系“计算机视觉/三维重建论文速递”系列之一,致力于简洁清晰完整地介绍、解读计算机视觉,特别是三维重建领域最新的顶会/顶刊论文(包括但不限于 Nature/Science及其子刊; CVPR, ICCV, ECCV, NeurIPS, ICLR, ICML, TPAMI, IJCV 等)。 本次介绍的论…...

动态规划(基础)

一,背包问题 老规矩,上链接(http://t.csdn.cn/hEwvu) (1)01背包问题 给定一个承重量为C的背包,n个重量分别为w1​,w2​,...,wn​的物品,物品i放入背包能产生pi​(>0)的价值(i1,…...

【Pytorch:nn.Embedding】简介以及使用方法:用于生成固定数量的具有指定维度的嵌入向量embedding vector

文章目录 1、nn.Embedding2、使用场景 1、nn.Embedding 首先我们讲解一下关于嵌入向量embedding vector的概念 1)在自然语言处理NLP领域,是将单词、短语或其他文本单位映射到一个固定长度的实数向量空间中。嵌入向量具有较低的维度,通常在几…...

动态库的命名规则

1、动态库的命名规则:libname.so.x.y.z 名字含义lib这是共享库的前缀name共享库名字x主版本号y次版本号z发布版本号 2、每个版本号的含义 版本号含义主版本号表示库的重大升级,不同主版本号的库之间是不兼容的。依赖旧的主版本号的程序需要改动相应的…...

【Linux】网络---->网络理论

网络理论 网络协议分层模型网络数据的封装于分用地址管理 网络协议分层模型 OSI五层模型:应用层,传输层,网络层,数据链路层,物理层 应用层:主要负责应用程序间的沟通,代表协议有HTML协议&#x…...

Android学习之路(4) UI控件之输入框

本节引言: 在本节中,我们来学习第二个很常用的控件EditText(输入框); 和TextView非常类似,最大的区别是:EditText可以接受用户输入! 1.设置默认提示文本 如下图,相信你对于这种用户登录的界面并…...

1.初识Web

文章目录 1. 什么是Web?2.初始Web前端2.1.Web标准 1. 什么是Web? web:全球广域网,也称万维网(www World Wide Web),能够通过浏览器访问的网站。 2.初始Web前端 网页有哪些部分组成? 文字、图片、音频、视频、超链接… 我们看到的网页&am…...

【微服务技术一】Eureka、Nacos、Ribbon(配置管理、注册中心、负载均衡)

微服务技术一 技术栈图一、注册中心Eureka概念:搭建EurekaServer服务注册服务发现(消费者对提供者的远程调用) 二、Ribbon负载均衡负载均衡的原理:LoadBalanced负载均衡的策略:IRule懒加载 三、Nacos注册中心Nacos的安…...

【Linux】可重入函数 volatile关键字 以及SIGCHLD信号

可重入函数 volatile关键字 以及SIGCHLD信号 一、可重入函数1、引入2、可重入函数的判断 二、volatile关键字1、引入2、关于编译器的优化的简单讨论 三、SIGCHLD信号 一、可重入函数 1、引入 我们来先看一个例子来帮助我们理解什么是可重入函数: 假设我们现在要对…...

【动态规划】回文串问题

文章目录 动态规划(回文串问题)1. 回文子串2. 最长回文子串3. 回文串分割 IV4. 分割回文串 ||5. 最长回文子序列6. 让字符串成为回文串的最小插入次数 动态规划(回文串问题) 1. 回文子串 题目链接 状态表示 f[i][j]表示 i 到 j …...

Laravel Swift Mail发送带附件的邮件报错 “Swift_IoException The path cannot be empty“处理

先说下情况,就是我要做一个发送附件的邮件发送功能,结果,报错:The path cannot be empty。给我整的有点迷糊,网上也没有类似的问题。后来,我检查了一下代码,发现有个地方,是需要给附…...

Linux下常见的代理服务器软件介绍

在Linux系统中,代理服务器是我们搭建网络环境和处理网络请求的常用工具。但是,你知道Linux下常见的代理服务器软件有哪些吗?本文将为你带来对几款常见的Linux代理服务器软件的介绍,帮助你选择适合的代理服务器。 一、Squid&#…...

SCSS的基本用法

1、声明变量 $ 声明变量的符号 $ 下面这张图左半部分是scss的语法,右半部分是编译后的css。(整篇文章皆是如此) 2、默认变量 !default sass 的默认变量仅需要在值后面加上 !default 即可。 如果分配给变量的值后面添加了 !default 标志…...

alertmanager创建nginx-ingress basic auth鉴权

步骤 生成密码 printf "admin:$(openssl passwd -crypt xxxxxx)\n" >> auth 创建新的 Kubernetes 密钥 kubectl create secret generic basic-auth --from-file auth -n victoria-metrics 修改 ingress 以使用 secret 中的凭证来实现基本身份验证 编辑 P…...

系列六、Redis中的五大数据类型及相关操作

一、五大数据类型 String类型、List类型、Set类型、ZSet类型、hash类型。 二、String类型 2.1、内存储存模型 2.2、常用操作命令 三、List类型 3.1、概述 list列表,相当于Java中的list集合。特点:元素有序 且 可以重复。 3.2、内存存储模型 3.3、常用…...

四大运营商的大流量卡测评,看完您会选哪个运营商?

很多朋友都说网上的流量卡资费是真的便宜,但是小编认为资费便宜归便宜,但是运营商的小心思也有不少。 ​ 今天小编就带大家看一看三大运营商推出的正规流量卡都有哪些小心思? 首先,移动推出的线上大流量卡数量是最少的&#xff…...

Apache-Maven

安装Maven 解压apache-maven到目录下 Maven目录如下 bin:目录中存放的是可执行文件,JAVA项目中的编译执行打包都要使用bin. conf:存放的是Maven的配置文件,本地配置、私服配置都需要在conf下的settings.xml进行配置。 lib下存放的是Maven所…...

什么是原子交换?

安全地在各个区块链网络之间传输资产对于释放被困流动性并吸引更多用户进入这一领域至关重要,同时也保持 Web3 的信任最小化核心价值。原子交换是一种让两个人在不依赖于中介来促成交易的情况下,在不同的区块链网络之间交换通证资产的方式。这为 DeFi 用…...

java springboot word文档转pdf

java springboot word文档转pdf 1、环境2、依赖3、代码 1、环境 1、java、springboot 2、maven或者gradle 3、办公软件(自己电脑上的wps或者office等,如果部署到服务器上也要安装,linux、Mac 都有,自己安装) 可能会遇…...

【Leetcode Sheet】Weekly Practice 2

Leetcode Test 1281 整数的各位积和之差(8.9) 给你一个整数 n&#xff0c;请你帮忙计算并返回该整数「各位数字之积」与「各位数字之和」的差。 提示&#xff1a; 1 < n < 10^5 【原始代码】&#xff1a; int subtractProductAndSum(int n){//1 < n < 10^5//…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

vscode里如何用git

打开vs终端执行如下&#xff1a; 1 初始化 Git 仓库&#xff08;如果尚未初始化&#xff09; git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

#Uniapp篇:chrome调试unapp适配

chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器&#xff1a;Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...

DingDing机器人群消息推送

文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人&#xff0c;点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置&#xff0c;详见说明文档 成功后&#xff0c;记录Webhook 2 API文档说明 点击设置说明 查看自…...