图像去雨、去雪、去雾论文学习记录
All_in_One_Bad_Weather_Removal_Using_Architectural_Search
这篇论文发表于CVPR2020,提出一种可以应对多种恶劣天气的去噪模型,可以同时进行去雨、去雪、去雾操作。但该部分代码似乎没有开源。
提出的问题:
当下的模型只能针对一种恶劣天气进行处理,无法适用于多种复杂恶劣天气
目前的去噪数据集都是人为制作的,与真实数据具有差异。
创新点1:多合一去噪模型
该方法整体结构如下图所示,其基于对抗神经网络模型进行设计,包含一个生成器(Generator)与一个判别器(Discriminator)。于以往只能处理一种恶劣天气噪声不同,本文提出一种多合一去噪模型,可以同时完成去雨、去雪、去雾操作。
在生成器中,主要包含三个特征提取模块(雨雪雾 FE,Feature Exactor)
,一个特征选择模块
(Feature Search)以及一个解码器模块
(Decoder),判别器则进行判断生成的图像是否为真,并将结果返回到生成器,计算损失,并通过反向传播更新生成器中的参数。
生成器含有多个任务的编码器,每个编码器与特定的恶劣天气类型相关,通过神经架构搜索来优化从各个编码器中提取的图像特征,并将这些特征转换为干净的图像。即思路为:将含有雨雪雾的图像输入生成器,通过生成器中的编码器(FE)进行特征提取,将提取的特征通过神经架构搜索进行优化,选取好的特征信息,将提取的特征信息送入解码器生成干净图像,即完成去噪过程。
生成器模块
多个编码器,用于提取不同恶劣天气图像的干净特征,从而进行恢复,生成干净图像。
创新点2:Feature Search模块
神经架构查询实际是找到干净的特征,将干净的特征转换为干净的图像。
可以看到,FeatureSearch模块中除了常规的卷积操作外,还有残差连接,自注意力机制等。
常规的去雾、去霾模型定义如下:
也可以表示如下:通过1x1卷积来提取学习M,从而估计M,实现的操作如4.1所示。
创新点3:多类辅助判别器
基于生成对抗网络(GNN)的判别器通过训练来判断恢复图像效果(即判断生成的图像真实性),但其不提供错误信号,对于多合一模型而言,只知道真假是远远不够的,需要直到生成的图像类型,从而使编码器根据不同类型更新参数,因此提出多类辅助判别器,用于对图像进行分类,从而在反向传播判别损失时,只更新对应判别器的参数。
具体思路
雾霾图像建模
其中,I(x)为有雾图像,更具体的,I(x)是在位置x的雨图像,J(x)为观察目标反射光,即去雾后的图像,A为大气光系数,t(x)为大气透射率,t(x)= e^-βd(x),其中,d(x) 为场景深度图,β 为大气光散射系数。由公式(1)式可以清晰知道,只要求得 t(x) 和 A ,便可以从有雾图像 I(x) 恢复无雾图像 J(x) 。
而含雨图像与含雾图像的物理模型极为相似,故可以定义为:
其中,Ri代表第 i 层的雨线。
雨水图像建模
其中I(x)是彩色雨滴图像,M(x)是二值图像掩膜。J(x)是背景图像,即干净图像,K是图像所带来的附着的雨滴,代表着模糊的影像形成光线反射的环境。
雪花图像建模
其中S表示雪花,z是二元掩模,表示雪的位置。
根据上面的物理模型公式可知,不同恶劣天气噪声图像定义是不同的,这也是为何原本的模型都是一个模型处理一种恶劣天气噪声的原因,但根据公式我们也可以看到其内在联系,可以将恶劣天气噪声图像模型定义如下:
相关文章:

图像去雨、去雪、去雾论文学习记录
All_in_One_Bad_Weather_Removal_Using_Architectural_Search 这篇论文发表于CVPR2020,提出一种可以应对多种恶劣天气的去噪模型,可以同时进行去雨、去雪、去雾操作。但该部分代码似乎没有开源。 提出的问题: 当下的模型只能针对一种恶劣天气…...

YARN框架和其工作原理流程介绍
目录 一、YARN简介 二、YARN的由来 三、YARN的基本设计思想 四、YARN 的基本架构 4.1 基本架构图 4.2 基本组件介绍 4.2.1 ResourceManager 4.2.1.1 任务调度器(Resource Scheduler) 4.2.1.2 应用程序管理器(Applications Manager) 4.2.1.3 其他…...

多维时序 | MATLAB实现ZOA-CNN-BiGRU-Attention多变量时间序列预测
多维时序 | MATLAB实现ZOA-CNN-BiGRU-Attention多变量时间序列预测 目录 多维时序 | MATLAB实现ZOA-CNN-BiGRU-Attention多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.Matlab基于ZOA-CNN-BiGRU-Attention斑马优化卷积双向门控循环单元网络…...
centos上下载redis
1.redis 特点 Redis特性(8个) 1 速度快:10w ops(每秒10w读写),数据存在内存中,c语言实现,单线程模型 2 持久化:rdb和aof 3 多种数据结构: 5大数据结构 …...
黑马项目一阶段面试58题 Web14题(二)
八、内连接和外连接查询有什么区别 内连接 获取两表的交集部分 外连接 获取某表的所有数据,以及两表的交集数据 九、事务管理的作用,四大特性 作用 保证多个增删改的操作,要么同时成功,要么同时失败 四大特性 1.原子性 事…...

软考高项-思维导图34-36(计算机高级系统项目管理师)
陆续更新一些软考高项的思维导图,都是一些必背知识点,希望可以帮助大家早日考过高项,早日当上高工,早日成为杭州E类人才。全部完整导图快速获取链接:计算机高级系统项目管理师-思维导图汇总 三十四、需求按层次分 三十…...

C++的stack和queue+优先队列
文章目录 什么是容器适配器底层逻辑为什么选择deque作为stack和queue的底层默认容器优先队列优先队列的模拟实现stack和queue的模拟实现 什么是容器适配器 适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总 结),…...
Ubuntu 18.04.6 Android Studio Giraffe adb logcat 无法使用
在 Ubuntu 18.04.6 上 在链接上设备以后,发现可以用 Android Studio 安装应用 但无法用 Android Studio 看 logcat 手动从命令行停止,启动 adb 会报错如下: daemon not running. starting it now on port 5037 ADB server didnt ACK fail…...

Python采集天气数据,做可视化分析【附源码】
嗨害大家好鸭!我是小熊猫~ 毕业设计大家着急吗? 没事,我来替大家着急 源码、素材python永久安装包:点击此处跳转文末名片获取 本文知识点: 动态数据抓包 requests发送请求 结构化非结构化数据解析 开发环境: python 3.8 运行代码 pycharm 2…...

优维低代码实践:自定义模板
优维低代码技术专栏,是一个全新的、技术为主的专栏,由优维技术委员会成员执笔,基于优维7年低代码技术研发及运维成果,主要介绍低代码相关的技术原理及架构逻辑,目的是给广大运维人提供一个技术交流与学习的平台。 优维…...

电商3D产品渲染简明教程
3D 渲染让动作电影看起来更酷,让建筑设计变得栩栩如生,现在还可以帮助营销人员推广他们的产品。 从最新的《阿凡达》电影到 Spotify 的上一次营销活动,3D 的应用让一切变得更加美好。 在营销领域,3D 产品渲染可帮助品牌创建产品的…...

探索未来:元宇宙与Web3的无限可能
随着科技的奇迹般发展,互联网已经成为了我们生活的不可分割的一部分。然而,尽管它的便利性和普及性带来了巨大的影响,但我们仍然面临着传统互联网体验的诸多限制。 购物需要不断在实体店与电商平台间切换,教育依然受制于时间与地…...
GraphQL(六)登录态校验Directive
GraphQL Directive(指令)是GraphQL中的一种特殊类型,它允许开发者在GraphQL schema中添加元数据,以控制查询和解析操作的行为 Directive的详细说明及使用可见GraphQL(五)指令[Directive]详解 本文将介绍通过…...

强大的AI语言模型
1.kameAI 点我 1️⃣可以绘图 2️⃣对接4.0 3️⃣具有长篇写作...

成集云 | 鼎捷ERP采购单同步钉钉 | 解决方案
源系统成集云目标系统 方案介绍 鼎捷ERP(Enterprise Resource Planning)是一款综合性的企业管理软件,它包括了多个模块来管理企业的各个方面,其中之一就是采购订单模块。鼎捷ERP的采购订单模块可以帮助企业有效管理和控制采购过程…...

【Kubernetes】Kubernetes的PV和PVC的用法
PV、PVC 前言一、 存储卷1. emptyDir 存储卷1.1 概念1.2 实例 2. hostPath 存储卷2.1 概念2.2 实例 3. nfs共享存储卷 二、PV 和 PVC1. 概念1.1 PV1.2 PVC1.3 PVC 的使用逻辑1.4 创建机制1.5 PV 和 PVC 的生命力周期1.6 创建及销毁 PV 的流程 2. PV 和 PVC 的创建2.1 查看定义2…...

【Redis】Redis三种集群模式-主从、哨兵、集群各自架构的优点和缺点对比
文章目录 前言1. 单机模式2. 主从架构3. 哨兵4. 集群模式总结 前言 如果Redis的读写请求量很大,那么单个实例很有可能承担不了这么大的请求量,如何提高Redis的性能呢?你也许已经想到了,可以部署多个副本节点,业务采用…...
Python爬虫:如何使用Python爬取网站数据
更新:2023-08-13 15:30 想要获取网站的数据?使用Python爬虫是一个绝佳的选择。Python爬虫是通过自动化程序来提取互联网上的信息。本文章将会详细介绍Python爬虫的相关技术。 一、网络协议和请求 在使用Python爬虫之前,我们需要理解网络协…...
剑指offer专题2:队列和栈
用两个栈模拟队列 class CQueue {stack<int> stack1;stack<int> stack2; public:CQueue() {}void appendTail(int value) {stack1.push(value);}int deleteHead() {int val-1;if(!stack2.empty()){val stack2.top();stack2.pop();}else if(!stack1.empty()){while…...
pytorch入门-神经网络
神经网络的基本骨架 import torch from torch import nn #nn模块是PyTorch中用于构建神经网络模型的核心模块。它提供了各种类和函数,可以帮助你定义和训练神经网络。class Tudui(nn.Module):def __init__(self):super(Tudui, self).__init__() #调用 super(Tudui,…...

【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...

ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...

ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...

Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...