prometheus监控k8s服务并告警到钉钉
一、监控k8s集群
要监控k8s集群需要使用到以下服务用于收集监控的资源信息,node_exporter用于监控k8s集群节点的资源信息,kube-state-metrics用于监控k8s集群的deployment、statefulset、daemonset、pod等的状态,cadvisor用于监控k8s集群的pod资源信息
在k8s集群中创建monitoring的命名空间用于部署监控的容器
kubectl create namespace monitoring
在k8s集群中部署node_exporter容器服务
vi node-exporter.yaml
apiVersion: apps/v1
kind: DaemonSet #使用daemonset控制器,使得集群中的每个节点都能部署一个pod
metadata:name: node-exporternamespace: monitoring labels:k8s-app: node-exporter
spec:selector:matchLabels:k8s-app: node-exportertemplate:metadata:labels:k8s-app: node-exporterspec:tolerations: #配置容忍策略,使得pod能部署在master节点上- effect: NoSchedulekey: node-role.kubernetes.io/control-planecontainers:- image: prom/node-exporter #配置node-exporter的镜像imagePullPolicy: IfNotPresentname: prometheus-node-exporterports:- containerPort: 9100 #配置容器端口hostPort: 9100 #配置绑定k8s主机节点的端口,用于提供对外访问的接口protocol: TCPname: metricshostNetwork: true #使用hostNetwork: true是必要的,这样才能将Pod的网络栈绑定到宿主机上,以实现hostPort的功能
执行yaml生成node-exporter容器
kubectl apply -y node-exporter.yaml
查看容器
kubectl get pod -n monitoring -l k8s-app=node-exporter -o wide
可以看到集群的每个节点都有一个node_exporter的pod服务
查看收集的数据
http://10.1.60.119:9100/metrics
在k8s集群中部署kube-state-metrics容器服务
部署kube-state-metrics服务需要去github上的项目拉取yaml
下载地址:https://github.com/kubernetes/kube-state-metrics/tree/v2.9.2
需要根据自己的k8s集群版本下载合适的kube-state-metrics版本,我的k8s版本是1.26.0所以我是下载了2.9.2版本的kube-state-metrics
mkdir /opt/kube-state-metrics && cd /opt/kube-state-metrics
将下载的安装包放到该目录下解压
tar -zxvf kube-state-metrics-2.9.2.tar.gz
将需要用到的yaml文件拷贝出来
mv kube-state-metrics-2.9.2/examples/standard/* /opt/kube-state-metrics
ls
更改一下yaml文件
vi deployment.yaml
apiVersion: apps/v1
kind: Deployment #使用deployment控制器,将pod部署在工作节点即可
metadata:labels:app.kubernetes.io/component: exporterapp.kubernetes.io/name: kube-state-metricsapp.kubernetes.io/version: 2.9.2name: kube-state-metricsnamespace: kube-system
spec:replicas: 1selector:matchLabels:app.kubernetes.io/name: kube-state-metricstemplate:metadata:labels:app.kubernetes.io/component: exporterapp.kubernetes.io/name: kube-state-metricsapp.kubernetes.io/version: 2.9.2spec:automountServiceAccountToken: truecontainers:- image: bitnami/kube-state-metrics:2.9.2 #更改镜像地址,原本的镜像在国外拉不下来livenessProbe:httpGet:path: /healthzport: 8080initialDelaySeconds: 5timeoutSeconds: 5name: kube-state-metricsports:- containerPort: 8080name: http-metrics- containerPort: 8081name: telemetryreadinessProbe:httpGet:path: /port: 8081initialDelaySeconds: 5timeoutSeconds: 5securityContext:allowPrivilegeEscalation: falsecapabilities:drop:- ALLreadOnlyRootFilesystem: truerunAsNonRoot: truerunAsUser: 65534seccompProfile:type: RuntimeDefaultnodeSelector:kubernetes.io/os: linuxserviceAccountName: kube-state-metrics
关于镜像的问题可以使用docker命令查一下镜像
docker search kube-state-metrics
vi service.yaml
apiVersion: v1
kind: Service
metadata:labels:app.kubernetes.io/component: exporterapp.kubernetes.io/name: kube-state-metricsapp.kubernetes.io/version: 2.9.2name: kube-state-metricsnamespace: kube-system
spec:type: NodePortclusterIP:ports:- name: http-metricsport: 8080nodePort: 30080 #原本的端口值比较大,超过了nodeport的端口范围targetPort: http-metricsprotocol: TCP- name: telemetryport: 8081 nodePort: 30081 #原本的端口值比较大,超过了nodeport的端口范围targetPort: telemetryprotocol: TCPselector:app.kubernetes.io/name: kube-state-metrics
其它的yaml保持默认即可
执行yaml创建kube-state-metrics服务
kubectl apply -f /opt/kube-state-metrics/
查看pod、svc服务
kubectl get pod,svc -n kube-system
查看收集的数据
http://10.1.60.119:30080/metrics
在k8s集群中部署cadvisor容器服务
vi cadvisor.yaml
apiVersion: apps/v1
kind: DaemonSet
metadata:name: cadvisornamespace: monitoring
spec:selector:matchLabels:k8s-app: cadvisortemplate:metadata:labels:k8s-app: cadvisorspec:tolerations:- effect: NoSchedulekey: node-role.kubernetes.io/control-planehostNetwork: truerestartPolicy: Alwayscontainers:- name: cadvisorimage: google/cadvisorimagePullPolicy: IfNotPresentports:- containerPort: 8080hostPort: 8080protocol: TCPname: metrics
执行yaml生成cadvisor容器
kubectl apply -y cadvisor.yaml
查看容器
kubectl get pod -n monitoring -l k8s-app=cadvisor -o wide
可以看到集群的每个节点都有一个cadvisor的pod服务
查看收集的数据
http://10.1.60.119:8080/metrics
二、Prometheus获取监控服务的数据并使用grafana展示
部署prometheus
参考:prometheus部署_Apex Predator的博客-CSDN博客
部署grafana
参考: grafana部署_Apex Predator的博客-CSDN博客
配置prometheus
编辑Prometheus配置文件
vi /opt/prometheus/prometheus/prometheus.yml
global:scrape_interval: 15s evaluation_interval: 15s
#alerting: #关于告警组件的配置先忽略# alertmanagers:# - static_configs:# - targets:# - 10.1.60.118:9093
#rule_files: #关于告警规则的配置先忽略
# - "/opt/prometheus/prometheus/rule/*.yml"
scrape_configs:- job_name: "prometheus"static_configs:- targets: ["localhost:9090"]- job_name: "k8s_node_exporter" #配置k8s集群node_exporter监控数据服务的接口static_configs:- targets: ["10.1.60.119:9100","10.1.60.120:9100","10.1.60.121:9100","10.1.60.122:9100","10.1.60.123:9100"]- job_name: "k8s_pod_cadvisor" #配置k8s集群cadvisor监控数据服务的接口static_configs:- targets: ["10.1.60.119:8080","10.1.60.120:8080","10.1.60.121:8080","10.1.60.122:8080","10.1.60.123:8080"]- job_name: "kube-state-metrics" #配置k8s集群kube-state-metrics监控数据服务的接口static_configs:- targets: ["10.1.60.119:30081"]- job_name: "kube-state-telemetry"static_configs:- targets: ["10.1.60.119:30080"]
重启prometheus服务
systemctl restart prometheus
查看prometheus监控接口的情况
http://10.1.60.118:9090
配置grafana
配置prometheus为数据源
配置数据展示的dashboard
在以下网页中找到需要的模板
地址:Dashboards | Grafana Labs
node_exporter服务的模板我们就使用id为1860的模板
kube-state-metrics服务的模板我们就使用id为13332的模板
cadvisor服务的模板我们就使用id为1860的模板
配置grafana应用模板
其余两个也是一样找到模板id后进行配置即可,这里就不再展示了
三、Prometheus配置告警规则和告警服务实现钉钉告警
要实现钉钉告警需要部署alertmanager和prometheus-webhook-dingtalk服务
部署参考:prometheus告警发送组件部署_Apex Predator的博客-CSDN博客
配置prometheus告警规则
关于prometheus的告警规则可以在以下网站中找,里面有很多的告警规则
参考:Awesome Prometheus alerts | Collection of alerting rules
我这里就配置k8s集群主机节点的告警规则和pod的一些告警规则
mkdir /opt/prometheus/prometheus/rule && cd /opt/prometheus/prometheus/rule
vi node_exporter.yml
groups:
- name: 服务器资源监控rules:- alert: 内存使用率过高expr: 100 - (node_memory_MemAvailable_bytes / node_memory_MemTotal_bytes) * 100 > 80for: 3mlabels:severity: 严重告警annotations:summary: "{{ $labels.instance }} 内存使用率过高, 请尽快处理!"description: "{{ $labels.instance }}内存使用率超过80%,当前使用率{{ $value }}%."- alert: 服务器宕机expr: up == 0for: 1slabels:severity: 严重告警annotations:summary: "{{$labels.instance}} 服务器宕机, 请尽快处理!"description: "{{$labels.instance}} 服务器延时超过3分钟,当前状态{{ $value }}. "- alert: CPU高负荷expr: 100 - (avg by (instance,job)(irate(node_cpu_seconds_total{mode="idle"}[5m])) * 100) > 90for: 5mlabels:severity: 严重告警annotations:summary: "{{$labels.instance}} CPU使用率过高,请尽快处理!"description: "{{$labels.instance}} CPU使用大于90%,当前使用率{{ $value }}%. "- alert: 磁盘IO性能expr: avg(irate(node_disk_io_time_seconds_total[1m])) by(instance,job)* 100 > 90for: 5mlabels:severity: 严重告警annotations:summary: "{{$labels.instance}} 流入磁盘IO使用率过高,请尽快处理!"description: "{{$labels.instance}} 流入磁盘IO大于90%,当前使用率{{ $value }}%."- alert: 网络流入expr: ((sum(rate (node_network_receive_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance,job)) / 100) > 102400for: 5mlabels:severity: 严重告警annotations:summary: "{{$labels.instance}} 流入网络带宽过高,请尽快处理!"description: "{{$labels.instance}} 流入网络带宽持续5分钟高于100M. RX带宽使用量{{$value}}."- alert: 网络流出expr: ((sum(rate (node_network_transmit_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance,job)) / 100) > 102400for: 5mlabels:severity: 严重告警annotations:summary: "{{$labels.instance}} 流出网络带宽过高,请尽快处理!"description: "{{$labels.instance}} 流出网络带宽持续5分钟高于100M. RX带宽使用量{$value}}."- alert: TCP连接数expr: node_netstat_Tcp_CurrEstab > 10000for: 2mlabels:severity: 严重告警annotations:summary: " TCP_ESTABLISHED过高!"description: "{{$labels.instance}} TCP_ESTABLISHED大于100%,当前使用率{{ $value }}%."- alert: 磁盘容量expr: 100-(node_filesystem_free_bytes{fstype=~"ext4|xfs"}/node_filesystem_size_bytes {fstype=~"ext4|xfs"}*100) > 90for: 1mlabels:severity: 严重告警annotations:summary: "{{$labels.mountpoint}} 磁盘分区使用率过高,请尽快处理!"description: "{{$labels.instance}} 磁盘分区使用大于90%,当前使用率{{ $value }}%."
vi kube-state-metrics.yml
groups: #用于定义一个或多个告警规则分组
- name: k8s容器服务监控 #告警规则分组的名称,用于标识一组相关的告警规则rules: #规则列表,每个规则定义了一个具体的告警条件和处理方式- alert: KubernetesNodeNotReady #告警规则的名称,用于标识告警规则expr: kube_node_status_condition{condition="Ready",status="true"} == 0 #定义告警的条件for: 10m #告警规则的持续时间配置,规定了节点状态满足告警条件的持续时间达到 10 分钟时触发告警labels:severity: 严重告警 #告警规则标签annotations:summary: "Kubernetes node not ready (instance {{ $labels.instance }})"description: "Node {{ $labels.node }} has been unready for a long time\n VALUE = {{ $value }}\n LABELS = {{ $labels }}"- alert: KubernetesOutOfCapacityexpr: sum by (node) ((kube_pod_status_phase{phase="Running"} == 1) + on(uid) group_left(node) (0 * kube_pod_info{pod_template_hash=""})) / sum by (node) (kube_node_status_allocatable{resource="pods"}) * 100 > 90for: 2mlabels:severity: 严重告警annotations:summary: "Kubernetes out of capacity (instance {{ $labels.instance }})"description: "{{ $labels.node }} is out of capacity\n VALUE = {{ $value }}\n LABELS = {{ $labels }}"- alert: KubernetesContainerOomKillerexpr: (kube_pod_container_status_restarts_total - kube_pod_container_status_restarts_total offset 10m >= 1) and ignoring (reason) min_over_time(kube_pod_container_status_last_terminated_reason{reason="OOMKilled"}[10m]) == 1for: 0mlabels:severity: 严重告警annotations:summary: "Kubernetes container oom killer (instance {{ $labels.instance }})"description: "Container {{ $labels.container }} in pod {{ $labels.namespace }}/{{ $labels.pod }} has been OOMKilled {{ $value }} times in the last 10 minutes.\n VALUE = {{ $value }}\n LABELS = {{ $labels }}"- alert: KubernetesVolumeOutOfDiskSpaceexpr: kubelet_volume_stats_available_bytes / kubelet_volume_stats_capacity_bytes * 100 < 10for: 2mlabels:severity: 严重告警annotations:summary: "Kubernetes Volume out of disk space (instance {{ $labels.instance }})"description: "Volume is almost full (< 10% left)\n VALUE = {{ $value }}\n LABELS = {{ $labels }}"- alert: KubernetesPersistentvolumeErrorexpr: kube_persistentvolume_status_phase{phase=~"Failed|Pending", job="kube-state-metrics"} > 0for: 0mlabels:severity: 严重告警annotations:summary: "Kubernetes PersistentVolume error (instance {{ $labels.instance }})"description: "Persistent volume is in bad state\n VALUE = {{ $value }}\n LABELS = {{ $labels }}"- alert: pod不健康expr: sum by (namespace, pod) (kube_pod_status_phase{phase=~"Pending|Unknown|Failed"}) > 0for: 15mlabels:severity: 严重告警annotations:summary: "Kubernetes Pod not healthy (instance {{ $labels.instance }})"description: "Pod has been in a non-ready state for longer than 15 minutes.\n VALUE = {{ $value }}\n LABELS = {{ $labels }}"- alert: pod循环重启expr: increase(kube_pod_container_status_restarts_total[2m]) > 1for: 0mlabels:severity: 严重告警annotations:summary: "Kubernetes pod crash looping (instance {{ $labels.instance }})"description: "Pod {{ $labels.pod }} is crash looping\n VALUE = {{ $value }}\n LABELS = {{ $labels }}"- alert: deployment部署失败未回滚expr: kube_deployment_status_observed_generation != kube_deployment_metadata_generationfor: 10mlabels:severity: 严重告警annotations:summary: "Kubernetes Deployment generation mismatch (instance {{ $labels.instance }})"description: "A Deployment has failed but has not been rolled back.\n VALUE = {{ $value }}\n LABELS = {{ $labels }}"- alert: k8s证书临期警告expr: apiserver_client_certificate_expiration_seconds_count{job="apiserver"} > 0 and histogram_quantile(0.01, sum by (job, le) (rate(apiserver_client_certificate_expiration_seconds_bucket{job="apiserver"}[5m]))) < 7*24*60*60for: 0mlabels:severity: 严重告警annotations:summary: "Kubernetes client certificate expires next week (instance {{ $labels.instance }})"description: "A client certificate used to authenticate to the apiserver is expiring next week.\n VALUE = {{ $value }}\n LABELS = {{ $labels }}"
重启Prometheus服务
systemctl restart prometheus
访问prometheus查看规则是否生效
http://10.1.60.118:9090
告警测试,关闭node_exporter服务,看看是否会告警
kubectl delete -f node_exporter.yaml
通过prometheus我们可以看到告警规则首先是变成了pending状态
然后等了一会后转变为firing状态,这是因为配置了for,当触发条件满足一段时间后才会完全转化为触发告警
等待30s后将会收到钉钉告警,这是因为alertmanager配置了group_wait,当一组告警被触发后,在这个时间段内,其他属于同一组的告警也会被等待。这可以用于在一定时间内收集同一组告警,以便一次性发送通知
现在来将服务恢复一下,看多久会告警
kubectl apply -f node_exporter.yaml
可以看到是间隔时间几分钟后才告警恢复, 这是因为alertmanager配置了group_interval,一旦一个告警组的首个告警触发了通知,等待指定的间隔时间后,即使组内有其他告警,也会重新触发通知。这可以避免过于频繁地发送通知
其他的告警规则服务我就不一个一个测试了,都是没有问题的
相关文章:

prometheus监控k8s服务并告警到钉钉
一、监控k8s集群 要监控k8s集群需要使用到以下服务用于收集监控的资源信息,node_exporter用于监控k8s集群节点的资源信息,kube-state-metrics用于监控k8s集群的deployment、statefulset、daemonset、pod等的状态,cadvisor用于监控k8s集群的p…...
Go和Java实现解释器模式
Go和Java实现解释器模式 下面通过一个四则运算来说明解释器模式的使用。 1、解释器模式 解释器模式提供了评估语言的语法或表达式的方式,它属于行为型模式。这种模式实现了一个表达式接口,该接口 解释一个特定的上下文。这种模式被用在 SQL 解析、符…...

域名配置HTTPS
一、注册域名 这个可以在各大平台注册,具体看一下就会注册了,自己挑选一个自己喜欢的域名。 步骤一般也就是先实名,实名成功了才能注册域名。 二、办理SSL证书 这里使用的是阿里云的SSL免费证书 1、申请证书 二、填写申请 三、域名绑定生…...
机械设计cad,ug编程设计,ug模具设计,SolidWorks模具设计
模具设计培训课程: 【第一阶段:CAD识图制图】 [AutoCAD机械制图]:全面讲解AUTOCAD应用知识,常用命令讲解与运用,二维平面图绘制,三维成型零件的绘制与设计,制作工程图 【第二阶段:U…...

嵌入式开发的学习与未来展望:借助STM32 HAL库开创创新之路
引言: 嵌入式开发作为计算机科学领域的重要分支,为我们的日常生活和产业发展提供了无限的可能。STMicroelectronics的STM32系列芯片以其出色的性能和广泛的应用领域而备受关注。而STM32 HAL库作为嵌入式开发的高级库,为学习者提供了更高效、更…...

WPS-0DAY-20230809的分析和利用复现
WPS-0DAY-20230809的分析和初步复现 一、漏洞学习1、本地复现环境过程 2、代码解析1.htmlexp.py 3、通过修改shellcode拿shell曲折的学习msf生成sc 二、疑点1、问题2、我的测试测试方法测试结果 一、漏洞学习 强调:以下内容仅供学习和测试,一切行为均在…...

MongoDB(三十九)
目录 一、概述 (一)相关概念 (二)特性 二、应用场景 三、安装 (一)编译安装 (二)yum安装 1、首先制作repo源 2、软件包名:mongodb-org 3、启动服务:…...

InnoDB引擎
1 逻辑存储结构 InnoDB的逻辑存储结构如下图所示: 1). 表空间 表空间是InnoDB存储引擎逻辑结构的最高层, 如果用户启用了参数 innodb_file_per_table(在8.0版本中默认开启) ,则每张表都会有一个表空间(xxx.ibd),一个…...

CSS3中的var()函数
目录 定义: 语法: 用法: 定义: var()函数是一个 CSS 函数用于插入自定义属性(有时也被称为“CSS 变量”)的值 语法: var(custom-property-name, value) 函数的第一个参数是要替换的自定义属性…...

opencv图片换背景色
#include <iostream> #include<opencv2/opencv.hpp> //引入头文件using namespace cv; //命名空间 using namespace std;//opencv这个机器视觉库,它提供了很多功能,都是以函数的形式提供给我们 //我们只需要会调用函数即可in…...

JAVA语言:什么是懒加载机制?
JVM没有规定什么时候加载,一般是什么时候使用这个class才会什么时候加载,但是JVM规定了什么时候必须初始化(初始化是第三步、装载、连接、初始化),只要加载之后,那么肯定是要进行初始化的,所以我们就可以通过查看这个类有没有进行初始化,从而判断这个类有没有被加载。 …...

jupyter默认工作目录的更改
1、生成配置文件:打开Anaconda Prompt,输入如下命令 jupyter notebook --generate-config询问[y/N]时输入y 2、配置文件修改:根据打印路径打开配置文件jupyter_notebook_config.py,全文搜索找到notebook_dir所在位置。在单引号中…...

Flutter系列文章-Flutter UI进阶
在本篇文章中,我们将深入学习 Flutter UI 的进阶技巧,涵盖了布局原理、动画实现、自定义绘图和效果、以及 Material 和 Cupertino 组件库的使用。通过实例演示,你将更加了解如何创建复杂、令人印象深刻的用户界面。 第一部分:深入…...
Elasticsearch在部署时,对Linux的设置有哪些优化方法?
部署Elasticsearch时,可以通过优化Linux系统的设置来提升性能和稳定性。以下是一些常见的优化方法: 1.文件描述符限制 Elasticsearch需要大量的文件描述符来处理数据和连接,所以确保调整系统的文件描述符限制。可以通过修改 /etc/security/…...

【网络基础】应用层协议
【网络基础】应用层协议 文章目录 【网络基础】应用层协议1、协议作用1.1 应用层需求1.2 协议分类 2、HTTP & HTTPS2.1 HTTP/HTTPS 简介2.2 HTTP工作原理2.3 HTTPS工作原理2.4 区别 3、URL3.1 编码解码3.2 URI & URL 4、HTTP 消息结构4.1 HTTP请求方法4.2 HTTP请求头信…...

面试八股文Mysql:(1)事务实现的原理
1. 什么是事务 事务就是一组数据库操作,这些操作是一个atomic(原子性的操作) ,不可分割,要么都执行,要么回滚(rollback)都不执行。这样就避免了某个操作成功某个操作失败࿰…...

Linux学习之sed多行模式
N将下一行加入到模式空间 D删除模式空间中的第一个字符到第一个换行符 P打印模式空间中的第一个字符到第一个换行符 doubleSpace.txt里边的内容如下: goo d man使用下边的命令可以实现把上边对应的内容放到doubleSpace.txt。 echo goo >> doubleSpace.txt e…...

【刷题笔记8.15】【链表相关】LeetCode:合并两个有序链表、反转链表
LeetCode:【链表相关】合并两个有序链表 题目1:合并两个有序链表 题目描述 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 输入:l1 [1,2,4], l2 [1,3,4] 输出:[1,1,2,3…...
神经网络基础-神经网络补充概念-11-向量化逻辑回归
概念 通过使用 NumPy 数组来进行矩阵运算,将循环操作向量化。 向量化的好处在于它可以同时处理多个样本,从而加速计算过程。在实际应用中,尤其是处理大规模数据集时,向量化可以显著提高代码的效率。 代码实现-以逻辑回归为例 i…...

openGauss学习笔记-40 openGauss 高级数据管理-锁
文章目录 openGauss学习笔记-40 openGauss 高级数据管理-锁40.1 语法格式40.2 参数说明40.3 示例 openGauss学习笔记-40 openGauss 高级数据管理-锁 如果需要保持数据库数据的一致性,可以使用LOCK TABLE来阻止其他用户修改表。 例如,一个应用需要保证表…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器
拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件: 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...
tomcat指定使用的jdk版本
说明 有时候需要对tomcat配置指定的jdk版本号,此时,我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...
深入浅出Diffusion模型:从原理到实践的全方位教程
I. 引言:生成式AI的黎明 – Diffusion模型是什么? 近年来,生成式人工智能(Generative AI)领域取得了爆炸性的进展,模型能够根据简单的文本提示创作出逼真的图像、连贯的文本,乃至更多令人惊叹的…...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...