分类预测 | MATLAB实现MTBO-CNN多输入分类预测
分类预测 | MATLAB实现MTBO-CNN多输入分类预测
目录
- 分类预测 | MATLAB实现MTBO-CNN多输入分类预测
- 预测效果
- 基本介绍
- 程序设计
- 参考资料
预测效果




基本介绍
1.MATLAB实现MTBO-CNN多输入分类预测
2.代码说明:基于登山队优化算法(MTBO)、卷积神经网络(CNN)的数据分类预测程序。
程序平台:要求于Matlab 2021版及以上版本。
特点:
通过登山队优化算法优化学习率、卷积核大小、卷积核个数,这3个关键参数,以测试集精度最高为目标函数。绘制:损失、精度迭代变化图;测试对比散点图、混淆矩阵图;适应度曲线(若首轮精度最高,则适应度曲线为水平直线)。展示:精确度、召回率、精确率、F1分数等评价指标。可直接替换数据,使用EXCEL表格导入,无需大幅修改程序。代码内部有详细注释,便于理解程序运行。
登山队优化算法(Mountaineering Team-Based Optimization,MTBO)是由Faridmehr于2023年3月提出来的。该算法基于人类行为协调的智力和环境进化。登山队由多名登山者组成,领队经验丰富且专业,其目标是征服该地区的山顶,山顶被认为是优化问题的最终全局解。
程序设计
- 完整程序和数据获取方式1:同等价值程序兑换;
- 完整程序和数据获取方式2:私信博主回复 MATLAB实现MTBO-CNN多输入分类预测获取。
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%% 个体极值和群体极值
[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :); % 全局最佳
gbest = pop; % 个体最佳
fitnessgbest = fitness; % 个体最佳适应度值
BestFit = fitnesszbest; % 全局最佳适应度值%% 迭代寻优
for i = 1 : maxgenfor j = 1 : sizepop% 速度更新V(j, :) = V(j, :) + c1 * rand * (gbest(j, :) - pop(j, :)) + c2 * rand * (zbest - pop(j, :));V(j, (V(j, :) > Vmax)) = Vmax;V(j, (V(j, :) < Vmin)) = Vmin;% 种群更新pop(j, :) = pop(j, :) + 0.2 * V(j, :);pop(j, (pop(j, :) > popmax)) = popmax;pop(j, (pop(j, :) < popmin)) = popmin;% 自适应变异pos = unidrnd(numsum);if rand > 0.95pop(j, pos) = rands(1, 1);end% 适应度值fitness(j) = fun(pop(j, :), hiddennum, net, p_train, t_train);endfor j = 1 : sizepop% 个体最优更新if fitness(j) < fitnessgbest(j)gbest(j, :) = pop(j, :);fitnessgbest(j) = fitness(j);end% 群体最优更新 if fitness(j) < fitnesszbestzbest = pop(j, :);fitnesszbest = fitness(j);endendBestFit = [BestFit, fitnesszbest];
end
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130462492
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129679476?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/129659229?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129653829?spm=1001.2014.3001.5501
相关文章:
分类预测 | MATLAB实现MTBO-CNN多输入分类预测
分类预测 | MATLAB实现MTBO-CNN多输入分类预测 目录 分类预测 | MATLAB实现MTBO-CNN多输入分类预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.MATLAB实现MTBO-CNN多输入分类预测 2.代码说明:基于登山队优化算法(MTBO)、卷积神经…...
操作符和表达式求值
目录 1.运算符的优先级和结合性 1.1运算符的优先级 1.2结合性 2.操作符的使用最终带来的是一个表达式的值 2.1.隐式类型转换(整型提升) 2.1.1整形提升的例子 2.2算术转换 1.运算符的优先级和结合性 运算符是编程语言中的基本元素之一,主…...
Unity Spine帧事件
SpinePro中添加事件帧 首先 选中右上角的层级树 然后选择事件选项 最后在右下角看到 新建 点击它 新建一个事件 点击左上角的设置按钮 弹出编辑窗口 编辑窗口 在右上角 动画栏 可以切换对应的动画 点坐边的那个小灰点来切换 亮点代表当前动画 选中帧 添加事件 点击对应事件…...
AE使用(一)
打开AE 点击“新建合成” 注意参数:宽度高度是视频是横屏还是竖屏。发布在抖音上,需要做出来竖屏效果;发布在视频网站中需要做出横屏效果。没用特殊需求,默认参数就行。 导入素材:左键双击“导入素材区”的空白部分。 …...
YOLOv5、YOLOv8改进:MobileViT:轻量通用且适合移动端的视觉Transformer
MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer 论文:https://arxiv.org/abs/2110.02178 1简介 MobileviT是一个用于移动设备的轻量级通用可视化Transformer,据作者介绍,这是第一次基于轻量级CNN网络性…...
06-4_Qt 5.9 C++开发指南_MDI应用程序设计
文章目录 1. MDI简介2. 文档窗口类 QFormDoc 的设计3. MDI主窗口设计与子窗口的使用3.1 主窗口界面设计3.2 MDI子窗口的创建与加入3.3 QMdiArea 常用功能函数3.4 MDI的信号 4. 源码4.1 qwmainwindow.h4.2 qwmainwindow.cpp 1. MDI简介 传统的应用程序设计中有多文档界面(Multi…...
【SCI征稿】3区SCI,正刊,智能传感、机器学习、智能检测与测量等均可
影响因子:IF:2.0-3.0 期刊分区:JCR3区,中科院4区 检索情况:SCIE在检,正刊 征稿领域:智能技术在测量与检测中的应用研究,如: ● 复杂系统的智能传感和高级故障诊断 ●…...
神经网络ANN(MLP),CNN以及RNN区别和应用
1. Artificial Neural Network(ANN) 又称为Multilayer Perception Model(MLP) 2. CNN AAA 3. RNN 22 先占坑,后期再整理 References [1] CNN vs.RNN vs.ANN——浅析深度学习中的三种神经网络 - 知乎 [2] https://www.youtube.com/watch?vu7obuspdQu4 [3] 深…...
CUDA、cuDNN以及Pytorch介绍
文章目录 前言一、CUDA二、cuDNN三、Pytorch 前言 在讲解cuda和cuDNN之前,我们首先来了解一下英伟达(NVIDA)公司。 NVIDIA是一家全球领先的计算机技术公司,专注于图形处理器(GPU)和人工智能(…...
使用shift关键字,写一个带二级命令的脚本(如:docker run -a -b -c中的run)
省流:shift关键字 探索思路 最近有一个小小的需求,写一个类似于docker run -a -b -c这样的脚本,这个脚本名为doline,它本身可以执行(doline -a -b -c),同时又带有几个如run、init、start这样的…...
MySQL学习笔记 - 进阶部分
MySQL进阶部分 字符集的相关操作:字符集和比较规则:utf8与utf8mb4:比较规则:常见的字符集和对应的Maxlen: Centos7中linux下配置字符集:各个级别的字符集:执行show variables like %character%语…...
微信小程序实现左滑删除
一、效果 二、代码 实现思路使用的是官方提供的 movable-area:注意点,需要设置其高度,否则会出现列表内容重叠的现象。由于movable-view需要向右移动,左滑的时候给删除控件展示的空间,故 movable-area 需要左移 left:…...
安防视频监控有哪些存储方式?哪种存储方式最优?
视频监控系统涉及到大量的视频数据,需要对这些数据进行存储,以备日后查看或备份。视频监控的存储需求需要根据场所的实际情况进行选择,以保证监控数据的有效存储和日后的调阅、回溯。 当前视频监控的存储方式,通常有以下几种&…...
02-C++数据类型-高级
数据类型-高级 4、复合类型 4.4、结构简介 struct inflatable {char name[20];float vol;double price; };inflatable vincent; //C struct inflatable goose; //C例子 // structur.cpp -- a simple structure #include <iostream> struct inflatable // structu…...
Kotlin实战之获取本地配置文件、远程Apollo配置失败问题排查
背景 Kotlin作为一门JVM脚本语言,收到很多Java开发者的青睐。 项目采用JavaKotlin混合编程。Spring Boot应用开发,不会发生变动的配置放在本地配置文件,可能会变化的配置放在远程Apollo Server。 问题 因为业务需要,需要增加一…...
TCP协议的报头格式和滑动窗口
文章目录 TCP报头格式端口号序号和确认序号确认应答(ACK)机制超时重传机制 首部长度窗口大小报文类型URGACKSYNPSHFINRST 滑动窗口滑动窗口的大小怎么设定怎么变化滑动窗口变化问题 TCP报头格式 端口号 两个端口号比较好理解,通过端口号来找…...
java 使用log4j显示到界面和文件 并格式化
1.下载log4j jar包https://dlcdn.apache.org/logging/log4j/2.20.0/apache-log4j-2.20.0-bin.zip 2. 我只要到核心包 ,看需要 sources是源码包,可以看到说明。在IDEA里先加入class jar后,再双击这个class jar包或或右键选Navigate ,Add ,…...
【js】链接中有多余的怎么取出参数值
https://pq.equalearning.net/assessment/379208869278126080?userId23ebb&originhttps://www.equalearning.net&fnameIm&lnamehappy在上面的例子中,fnameI’m,其中单引号’被转义为, 而如果使用下面的代码,因为在UR…...
Verdi_traceX and autotrace
Verdi_traceX and autotrace Trace X From nWave/nTrace of from the Teporal Flow View. Show Paths on Flow ViewShow Paths on nWave 若Waveform中有X态,鼠标右键会有Trace X的选项; 会自动打开Temporal Flow View窗口,展示对应路径&am…...
安卓逆向 - 某严选app sign算法还原
本文仅供学习交流,只提供关键思路不会给出完整代码,严禁用于非法用途,若有侵权请联系我删除! 目标app: 5ouN5ouN5Lil6YCJMy45LjY 目标接口:aHR0cHM6Ly9hcGkubS5qZC5jb20vYXBp 一、引言 1、本篇分析某二手交易平台 …...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
