分类预测 | MATLAB实现MTBO-CNN多输入分类预测
分类预测 | MATLAB实现MTBO-CNN多输入分类预测
目录
- 分类预测 | MATLAB实现MTBO-CNN多输入分类预测
- 预测效果
- 基本介绍
- 程序设计
- 参考资料
预测效果




基本介绍
1.MATLAB实现MTBO-CNN多输入分类预测
2.代码说明:基于登山队优化算法(MTBO)、卷积神经网络(CNN)的数据分类预测程序。
程序平台:要求于Matlab 2021版及以上版本。
特点:
通过登山队优化算法优化学习率、卷积核大小、卷积核个数,这3个关键参数,以测试集精度最高为目标函数。绘制:损失、精度迭代变化图;测试对比散点图、混淆矩阵图;适应度曲线(若首轮精度最高,则适应度曲线为水平直线)。展示:精确度、召回率、精确率、F1分数等评价指标。可直接替换数据,使用EXCEL表格导入,无需大幅修改程序。代码内部有详细注释,便于理解程序运行。
登山队优化算法(Mountaineering Team-Based Optimization,MTBO)是由Faridmehr于2023年3月提出来的。该算法基于人类行为协调的智力和环境进化。登山队由多名登山者组成,领队经验丰富且专业,其目标是征服该地区的山顶,山顶被认为是优化问题的最终全局解。
程序设计
- 完整程序和数据获取方式1:同等价值程序兑换;
- 完整程序和数据获取方式2:私信博主回复 MATLAB实现MTBO-CNN多输入分类预测获取。
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%% 个体极值和群体极值
[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :); % 全局最佳
gbest = pop; % 个体最佳
fitnessgbest = fitness; % 个体最佳适应度值
BestFit = fitnesszbest; % 全局最佳适应度值%% 迭代寻优
for i = 1 : maxgenfor j = 1 : sizepop% 速度更新V(j, :) = V(j, :) + c1 * rand * (gbest(j, :) - pop(j, :)) + c2 * rand * (zbest - pop(j, :));V(j, (V(j, :) > Vmax)) = Vmax;V(j, (V(j, :) < Vmin)) = Vmin;% 种群更新pop(j, :) = pop(j, :) + 0.2 * V(j, :);pop(j, (pop(j, :) > popmax)) = popmax;pop(j, (pop(j, :) < popmin)) = popmin;% 自适应变异pos = unidrnd(numsum);if rand > 0.95pop(j, pos) = rands(1, 1);end% 适应度值fitness(j) = fun(pop(j, :), hiddennum, net, p_train, t_train);endfor j = 1 : sizepop% 个体最优更新if fitness(j) < fitnessgbest(j)gbest(j, :) = pop(j, :);fitnessgbest(j) = fitness(j);end% 群体最优更新 if fitness(j) < fitnesszbestzbest = pop(j, :);fitnesszbest = fitness(j);endendBestFit = [BestFit, fitnesszbest];
end
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130462492
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129679476?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/129659229?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129653829?spm=1001.2014.3001.5501
相关文章:
分类预测 | MATLAB实现MTBO-CNN多输入分类预测
分类预测 | MATLAB实现MTBO-CNN多输入分类预测 目录 分类预测 | MATLAB实现MTBO-CNN多输入分类预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.MATLAB实现MTBO-CNN多输入分类预测 2.代码说明:基于登山队优化算法(MTBO)、卷积神经…...
操作符和表达式求值
目录 1.运算符的优先级和结合性 1.1运算符的优先级 1.2结合性 2.操作符的使用最终带来的是一个表达式的值 2.1.隐式类型转换(整型提升) 2.1.1整形提升的例子 2.2算术转换 1.运算符的优先级和结合性 运算符是编程语言中的基本元素之一,主…...
Unity Spine帧事件
SpinePro中添加事件帧 首先 选中右上角的层级树 然后选择事件选项 最后在右下角看到 新建 点击它 新建一个事件 点击左上角的设置按钮 弹出编辑窗口 编辑窗口 在右上角 动画栏 可以切换对应的动画 点坐边的那个小灰点来切换 亮点代表当前动画 选中帧 添加事件 点击对应事件…...
AE使用(一)
打开AE 点击“新建合成” 注意参数:宽度高度是视频是横屏还是竖屏。发布在抖音上,需要做出来竖屏效果;发布在视频网站中需要做出横屏效果。没用特殊需求,默认参数就行。 导入素材:左键双击“导入素材区”的空白部分。 …...
YOLOv5、YOLOv8改进:MobileViT:轻量通用且适合移动端的视觉Transformer
MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer 论文:https://arxiv.org/abs/2110.02178 1简介 MobileviT是一个用于移动设备的轻量级通用可视化Transformer,据作者介绍,这是第一次基于轻量级CNN网络性…...
06-4_Qt 5.9 C++开发指南_MDI应用程序设计
文章目录 1. MDI简介2. 文档窗口类 QFormDoc 的设计3. MDI主窗口设计与子窗口的使用3.1 主窗口界面设计3.2 MDI子窗口的创建与加入3.3 QMdiArea 常用功能函数3.4 MDI的信号 4. 源码4.1 qwmainwindow.h4.2 qwmainwindow.cpp 1. MDI简介 传统的应用程序设计中有多文档界面(Multi…...
【SCI征稿】3区SCI,正刊,智能传感、机器学习、智能检测与测量等均可
影响因子:IF:2.0-3.0 期刊分区:JCR3区,中科院4区 检索情况:SCIE在检,正刊 征稿领域:智能技术在测量与检测中的应用研究,如: ● 复杂系统的智能传感和高级故障诊断 ●…...
神经网络ANN(MLP),CNN以及RNN区别和应用
1. Artificial Neural Network(ANN) 又称为Multilayer Perception Model(MLP) 2. CNN AAA 3. RNN 22 先占坑,后期再整理 References [1] CNN vs.RNN vs.ANN——浅析深度学习中的三种神经网络 - 知乎 [2] https://www.youtube.com/watch?vu7obuspdQu4 [3] 深…...
CUDA、cuDNN以及Pytorch介绍
文章目录 前言一、CUDA二、cuDNN三、Pytorch 前言 在讲解cuda和cuDNN之前,我们首先来了解一下英伟达(NVIDA)公司。 NVIDIA是一家全球领先的计算机技术公司,专注于图形处理器(GPU)和人工智能(…...
使用shift关键字,写一个带二级命令的脚本(如:docker run -a -b -c中的run)
省流:shift关键字 探索思路 最近有一个小小的需求,写一个类似于docker run -a -b -c这样的脚本,这个脚本名为doline,它本身可以执行(doline -a -b -c),同时又带有几个如run、init、start这样的…...
MySQL学习笔记 - 进阶部分
MySQL进阶部分 字符集的相关操作:字符集和比较规则:utf8与utf8mb4:比较规则:常见的字符集和对应的Maxlen: Centos7中linux下配置字符集:各个级别的字符集:执行show variables like %character%语…...
微信小程序实现左滑删除
一、效果 二、代码 实现思路使用的是官方提供的 movable-area:注意点,需要设置其高度,否则会出现列表内容重叠的现象。由于movable-view需要向右移动,左滑的时候给删除控件展示的空间,故 movable-area 需要左移 left:…...
安防视频监控有哪些存储方式?哪种存储方式最优?
视频监控系统涉及到大量的视频数据,需要对这些数据进行存储,以备日后查看或备份。视频监控的存储需求需要根据场所的实际情况进行选择,以保证监控数据的有效存储和日后的调阅、回溯。 当前视频监控的存储方式,通常有以下几种&…...
02-C++数据类型-高级
数据类型-高级 4、复合类型 4.4、结构简介 struct inflatable {char name[20];float vol;double price; };inflatable vincent; //C struct inflatable goose; //C例子 // structur.cpp -- a simple structure #include <iostream> struct inflatable // structu…...
Kotlin实战之获取本地配置文件、远程Apollo配置失败问题排查
背景 Kotlin作为一门JVM脚本语言,收到很多Java开发者的青睐。 项目采用JavaKotlin混合编程。Spring Boot应用开发,不会发生变动的配置放在本地配置文件,可能会变化的配置放在远程Apollo Server。 问题 因为业务需要,需要增加一…...
TCP协议的报头格式和滑动窗口
文章目录 TCP报头格式端口号序号和确认序号确认应答(ACK)机制超时重传机制 首部长度窗口大小报文类型URGACKSYNPSHFINRST 滑动窗口滑动窗口的大小怎么设定怎么变化滑动窗口变化问题 TCP报头格式 端口号 两个端口号比较好理解,通过端口号来找…...
java 使用log4j显示到界面和文件 并格式化
1.下载log4j jar包https://dlcdn.apache.org/logging/log4j/2.20.0/apache-log4j-2.20.0-bin.zip 2. 我只要到核心包 ,看需要 sources是源码包,可以看到说明。在IDEA里先加入class jar后,再双击这个class jar包或或右键选Navigate ,Add ,…...
【js】链接中有多余的怎么取出参数值
https://pq.equalearning.net/assessment/379208869278126080?userId23ebb&originhttps://www.equalearning.net&fnameIm&lnamehappy在上面的例子中,fnameI’m,其中单引号’被转义为, 而如果使用下面的代码,因为在UR…...
Verdi_traceX and autotrace
Verdi_traceX and autotrace Trace X From nWave/nTrace of from the Teporal Flow View. Show Paths on Flow ViewShow Paths on nWave 若Waveform中有X态,鼠标右键会有Trace X的选项; 会自动打开Temporal Flow View窗口,展示对应路径&am…...
安卓逆向 - 某严选app sign算法还原
本文仅供学习交流,只提供关键思路不会给出完整代码,严禁用于非法用途,若有侵权请联系我删除! 目标app: 5ouN5ouN5Lil6YCJMy45LjY 目标接口:aHR0cHM6Ly9hcGkubS5qZC5jb20vYXBp 一、引言 1、本篇分析某二手交易平台 …...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...
python执行测试用例,allure报乱码且未成功生成报告
allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...
