当前位置: 首页 > news >正文

回归预测 | MATLAB实现GRNN广义回归神经网络多输入多输出预测

回归预测 | MATLAB实现GRNN广义回归神经网络多输入多输出预测

目录

    • 回归预测 | MATLAB实现GRNN广义回归神经网络多输入多输出预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 往期精彩
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

MATLAB实现GRNN广义回归神经网络多输入多输出预测,输入10个特征,输出3个变量,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件,运行环境MATLAB2018b及以上。
命令窗口输出MAE和R2,可在下载区获取数据和程序内容。

程序设计

  • 完整程序和数据下载方式(资源处直接下载):MATLAB实现GRNN广义回归神经网络多输入多输出预测
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

往期精彩

MATLAB实现RBF径向基神经网络多输入多输出预测
MATLAB实现BP神经网络多输入多输出预测
MATLAB实现DNN神经网络多输入多输出预测
MATLAB实现LSTM长短期记忆神经网络多输入多输出预测

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/116377961
[2] https://blog.csdn.net/kjm13182345320/article/details/127931217
[3] https://blog.csdn.net/kjm13182345320/article/details/127894261

相关文章:

回归预测 | MATLAB实现GRNN广义回归神经网络多输入多输出预测

回归预测 | MATLAB实现GRNN广义回归神经网络多输入多输出预测 目录 回归预测 | MATLAB实现GRNN广义回归神经网络多输入多输出预测预测效果基本介绍程序设计往期精彩参考资料 预测效果 基本介绍 MATLAB实现GRNN广义回归神经网络多输入多输出预测,输入10个特征&#x…...

从零开始学习VBA(一)

前置配置设置 首先配置开发设置(不同版本的配置方法会有差异,可根据自己使用的EXCEL版本到网络上找对应的方法,比如直接搜索Excel2010 开发工具) 以下为excel2016配置方法: 操作路径:文件-选项-自定义功…...

Kotlin Executors线程池newSingleThreadExecutor单线程

Kotlin Executors线程池newSingleThreadExecutor单线程 import java.util.concurrent.Executorsfun main() {val mExecutorService Executors.newSingleThreadExecutor()for (i in 1..5) {mExecutorService.execute {println("seq-$i tid:${Thread.currentThread().threa…...

ZooKeeper介绍

ZooKeeper是一个开放源代码的分布式协调服务。ZooKeeper的设计目标是将那些复杂且容易出错的分布式一致性服务封装起来,构成一个高效可靠的原语集,并以一系列简单易用的接口提供给用户使用。 ZooKeeper是一个典型的分布式数据一致性的解决方案&#xff0…...

首起针对国内金融企业的开源组件投毒攻击事件

简述 2023年8月9日,墨菲监控到用户名为 snugglejack_org (邮件地址:SnuggleBearrxxhotmail.com)的用户发布到 NPM 仓库中的 ws-paso-jssdk 组件包具有发向 https://ql.rustdesk[.]net 的可疑流量,经过确认该组件包携带远控脚本&a…...

源于传承,擎领未来,新架构、新工艺下的“换心工程”——金融电子化访中电金信副总经理、研究院院长况文川

当前,商业银行的经营环境正在发生着深刻而复杂的变化,在深化改革主旋律的指引下,数字化转型已成为我国商业银行普遍认同、广泛采用的战略性举措。核心系统作为承载银行业务的关键支柱系统,一直是各银行在金融科技建设中重点关注和…...

pytest数据驱动(最简单)

目录 第一种:通过yaml文件获取数据(一维列表) 第二种:通过yaml文件获取数据(二维列表) 第三种:通过yaml文件获取数据(pytest.fixture) 资料获取方法 第一种&#xff…...

分布式 - 服务器Nginx:一小时入门系列之代理缓冲与缓存

官方文档:https://nginx.org/en/docs/http/ngx_http_proxy_module.html 1. 代理缓冲 proxy_buffer 代理缓冲用于临时存储从后端服务器返回的响应数据。通过使用代理缓冲,Nginx可以在接收完整的响应后再将其发送给客户端,从而提高性能和效率…...

什么是集成学习算法

目录 什么是集成学习算法 集成学习发展史 集成学习组织方式 1) 并联组织关系...

springboot多模块打包方式

明确子父模块结构 父目录是带modules 大致结构如下&#xff1a; <modules><module>ruoyi-admin</module><module>ruoyi-framework</module><module>ruoyi-system</module><module>ruoyi-quartz</module><module>…...

【爬虫】Urllib让我们的 python 假装是浏览器

在 Python 这个内置的 Urllib 库中&#xff0c;有这么 4 个模块&#xff1a; request&#xff0c;request模块是我们用的比较多的&#xff0c;就是用它来发起请求&#xff0c;所以我们重点说说这个模块。error&#xff0c;error模块呢&#xff0c;就是当我们在使用 request 模…...

java基础面试

java深拷贝和浅拷贝的区别 深拷贝和浅拷贝最根本的区别在于是否真正获取一个对象的复制实体&#xff0c;而不是引用。 假设B复制了A&#xff0c;修改A的时候&#xff0c;看B是否发生变化&#xff1a; 如果B跟着也变了&#xff0c;说明是浅拷贝&#xff0c;拿人手短&#xff…...

C++ 动态规划经典案例解析之最长公共子序列(LCS)_窥探递归和动态规划的一致性

1. 前言 动态规划处理字符相关案例中&#xff0c;求最长公共子序列以及求最短编辑距离&#xff0c;算是经典中的经典案例。 讲解此类问题的算法在网上一抓应用一大把&#xff0c;即便如此&#xff0c;还是忍不住有写此文的想法。毕竟理解、看懂都不算是真正掌握&#xff0c;唯…...

接口测试自动化:简化测试流程,提升效率

接口测试自动化&#xff1a;简化测试流程&#xff0c;提升效率 什么是接口测试自动化&#xff1f; 接口测试自动化是指使用特定的工具和技术来自动化执行接口测试的过程。通过编写脚本&#xff0c;自动化工具可以模拟用户与软件系统的交互&#xff0c;验证接口的功能和性能。…...

LoRA微调方法详解

本文要介绍的是大模型的微调训练方法之一----LoRA。 0 背景 现在大模型非常火爆&#xff0c;大家都在想方设法应用大模型。 当前很多大模型虽说可以zero-shot直接使用&#xff0c; 但是在具体应用上一般还是微调一下效果更好&#xff0c; 也就是常说的finetune。 在小模型时代…...

redis-数据类型及样例

一.string 类型数据的基本操作 1.添加/修改数据 set key value2.获取数据 get key3.删除数据 del key4.添加/修改多个数据 mset key1 value1 key2 value25.获取多个数据 mget key1 key2二.list类型的基本操作 数据存储需求&#xff1a;存储多个数据&#xff0c;并对数据…...

公司电脑三维图纸加密、机械图挡加密软件

机械图纸加密软件的问世&#xff0c;让很多的网络公司都大受其带来的工作中的便利。在安装了机械图纸加密软件后&#xff0c;不仅可以很好的管理员工在工作时的上网娱乐&#xff0c;在对整个公司员工的工作效率上也有着明显的提高&#xff0c;那么对于机械图纸加密软件的具体特…...

安装使用IDEA,修改样式,配置服务,构建Maven项目(超级详细版)

目录 前言&#xff1a; 一&#xff0c;安装 1.1打开官网JetBrains: Essential tools for software developers and teams点击 Developer Tools&#xff0c;再点击 Intellij IDEA 2.点击下载​编辑 3.选择对应的版本&#xff0c;左边的 Ultimate 版本为旗舰版&#xff0c;需要…...

Apache Dubbo 云原生可观测性的探索与实践

作者&#xff1a;宋小生 - 平安壹钱包中间件资深工程师 Dubbo3 可观测能力速览 Apache Dubbo3 在云原生可观测性方面完成重磅升级&#xff0c;使用 Dubbo3 最新版本&#xff0c;你只需要引入 dubbo-spring-boot-observability-starter 依赖&#xff0c;微服务集群即原生具备以…...

DaVinci Resolve Studio 18 for Mac 达芬奇调色

DaVinci Resolve Studio 18是一款专业的视频编辑和调色软件&#xff0c;适用于电影、电视节目、广告等各种视觉媒体的制作。它具有完整的后期制作功能&#xff0c;包括剪辑、调色、特效、音频处理等。 以下是DaVinci Resolve Studio 18的主要特点&#xff1a; - 提供了全面的视…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日&#xff0c;国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解&#xff0c;“超级…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请&#xff0c;不同级别的经理有不同的审批权限&#xff1a; // 抽象处理者&#xff1a;审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时&#xff0c;遇到的一些问题总结一下 [参考文档]&#xff1a;https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现&#xff1a; 今天在看到这个教程的时候&#xff0c;在自己的电…...

python爬虫——气象数据爬取

一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用&#xff1a; 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests&#xff1a;发送 …...

智能职业发展系统:AI驱动的职业规划平台技术解析

智能职业发展系统&#xff1a;AI驱动的职业规划平台技术解析 引言&#xff1a;数字时代的职业革命 在当今瞬息万变的就业市场中&#xff0c;传统的职业规划方法已无法满足个人和企业的需求。据统计&#xff0c;全球每年有超过2亿人面临职业转型困境&#xff0c;而企业也因此遭…...