LangChain手记 Question Answer 问答系统
整理并翻译自DeepLearning.AI×LangChain的官方课程:Question Answer(源代码可见)
本节介绍使用LangChian构建文档上的问答系统,可以实现给定一个PDF文档,询问关于文档上出现过的某个信息点,LLM可以给出关于该信息点的详情信息。这种使用方式比较灵活,因为并没有使用PDF上的文本对模型进行训练就可以实现文档上的信息点问答。本节介绍的Chain也比较常用,它涉及到了嵌入(embedding)和向量存储(vector store)。
(笔者注:embedding指的是将一个实体映射到高维空间,以高维向量的形式存储,以最大限度地capture其信息,自然语言处理使用embedding方式表示单词,即词向量。自然语言处理语境下,embedding都指的是word embedding词嵌入)
首先是一个简单的例子:


下面解释了一下底层原理:
LLM‘s on Documents 文档上的大语言模型

由于最大token数限制,LLM最多只能一次性处理几千个token。因而如果有一个文档级别的信息(远大于几千token),LLM没办法直接处理,因而引入词嵌入(embedding)和向量存储(vector store)来解决这个问题

Embedding 词嵌入
- 嵌入向量捕捉上下文/含义
- 相似(指语义相似)内容地文本对应相似的向量
如下图:句子1)和2)语义相似,因而它们的表示向量也相似。

因而我们可以使用表示向量的相似程度来判定两句话的相似程度,在回答文档上的问题时,先找出和提问相似的信息,作为输入喂给LLM,期望LLM能根据相似信息做出解答。
(笔者注:事实上,LLM内部就是将文本转化为词向量(tokenizer)来处理的,直接以向量形式存储节省了文本到向量的转化步骤。)
Vecotor Database 向量数据库


当一个查询输入时,先将其向量化,然后跟向量数据库里面的所有项对比,找出最相似的n项。

查询结果放入输入的上下文中喂给LLM,得到回复。
下面分步解释过程:

使用CSVLoader对象loader加载一个csv文件,里面存放了户外服装相关信息,打印第一行信息如上图。
因为文本量比较少,不需要分块,因而可以直接创建embedding,查看一个embedding(其实是一组词向量):




上述过程可以使用RetrievalQA chain轻松实现:


Stuff method 原材料方法

原材料是最简单的方法,只需要将所有的原始数据放到prompt中作为上下文喂给语言模型。
优点:只需调用一次LLM。LLM可以一次性访问所有数据。
缺点:LLM有上下文长度,对于大型文档或者多个文档超过上下文长度时无法生效。
additional methods 额外方法

Map_reduce:将文档每一个块和提问一起输入一个LLM中,汇总所有LLM结果,再使用一个LLM处理拿到最终答案。
(很有效,可以处理任意数量的文档,还可以并行,但很贵,且独立对待每一个文档,即忽略了文档之间的关联性)

Refine:从一个块和LLM中得到回复之后,再把结果作为下一轮的输出,不断优化到最后一个块,得到最终结果。
(好处时考虑了文档之间的关联性,和map_reduce代价相同)

Map_rank:处理所有块,给每一个块和LLM的结果打分,选一个分最高的作为最终结果。
(需要LLM有能力给结果打分,和map_reduce代价相同,也没有考虑文档之间的关联性)
相关文章:
LangChain手记 Question Answer 问答系统
整理并翻译自DeepLearning.AILangChain的官方课程:Question Answer(源代码可见) 本节介绍使用LangChian构建文档上的问答系统,可以实现给定一个PDF文档,询问关于文档上出现过的某个信息点,LLM可以给出关于该…...
如何优化css中的一些昂贵属性
如何优化css中的一些昂贵属性 就性能而言,某些 CSS 属性比其他属性的成本更高。如果使用不当,它们可能会减慢我们的网页速度并降低对用户的响应速度。在本文中,我们将探讨一些成本最高的 CSS 属性以及如何优化它们。 box-shadow box-shado…...
基于安防监控EasyCVR视频汇聚融合技术的运输管理系统的分析
一、项目背景 近年来,随着物流行业迅速发展,物流运输费用高、运输过程不透明、货损货差率高、供应链协同能力差等问题不断涌现,严重影响了物流作业效率,市场对于运输管理数字化需求愈发迫切。当前运输行业存在的难题如下…...
在WordPress站点中展示阅读量等流量分析数据(超详细实现)
这篇文章也可以在我的博客中查看 关于本文 专业的流量统计系统能够相对真实地反应网站的访问情况。 这些数据可以在后台很好地进行分析统计,但有时我们希望在网站前端展示一些数据 最常见的情景就是:展示页面的浏览量 这简单的操作当然也可以通过简单…...
学习 Iterator 迭代器
今天看到一个面试题, 让下面解构赋值成立。 let [a,b] {a:1,b:2} 如果我们直接在浏览器输出这行代码,会直接报错,说是 {a:1,b:2} 不能迭代。 看了es6文档后,具有迭代器的就一下几种类型,没有Object类型,…...
JVM---垃圾回收算法介绍
目录 分代收集理论 三种垃圾回收算法 标记-清除算法(最基础的、基本不用) 标记-复制算法 标记-整理算法 正式因为jvm有了垃圾回收机制,作为java开发者不会去特备关注内存,不像C和C。 优点:开发门槛低、安全 缺点…...
Ubuntu一直卡死的问题(20.04)
Ubuntu一直卡死的问题(18.04)_ubuntu频繁死机_Mr.Yi的博客-CSDN博客 我自己的解决方法: 1、首先强制关机重启后,直接打开命令行查看磁盘的使用: df -h发现/dev/loop都沾满了,我们能需要做的就是把他们清理干净 sud…...
自动化测试用例设计实例
在编写用例之间,笔者再次强调几点编写自动化测试用例的原则: 1、一个脚本是一个完整的场景,从用户登陆操作到用户退出系统关闭浏览器。 2、一个脚本脚本只验证一个功能点,不要试图用户登陆系统后把所有的功能都进行验证再退出系统…...
CSS3基础
CSS3在CSS2的基础上增加了很多功能,如圆角、多背景、透明度、阴影等,以帮助开发人员解决一些实际问题。 1、初次使用CSS 与HTML5一样,CSS3也是一种标识语言,可以使用任意文本编辑器编写代码。下面简单介绍CSS3的基本用法。 1.1…...
【栈】 735. 行星碰撞
735. 行星碰撞 解题思路 如果数组元素大于0 说明向右移动 那么不管 左边元素是不是大于0 都不会碰撞 如果数组元素小于0 说明想左边移动 那么判断左边元素 如果左边元素大于0 碰撞 那么遍历数组 当前元素大于0 直接入栈 如果当前元素小于0 判断栈顶元素是不是大于0 如果大…...
水库大坝安全监测MCU,提升大坝管理效率的利器!
水库大坝作为防洪度汛的重要设施,承担着防洪抗旱,节流发电的重要作用。大坝的安全直接关系到水库的安全和人民群众的生命财产安全。但因为水库大坝的隐患不易被察觉,发现时往往为时已晚。因此,必须加强对大坝的安全管理。其安全监…...
【vue2类型助手】vue2-cli 实现为 vue2 项目中的组件添加全局类型提示
实现 vue2 全局组件提示 vue2 项目全局注册组件直接使用没有提示 由于vue2中使用volar存在很大的性能问题,所以只能继续使用vetur,但是这样全局组件会没有提示,这对于开发来说,体验十分不友好,所以开发此cli并借助ve…...
mysql 索引 区分字符大小写
mysql 建立索引,特别是unique索引,是跟字符集、字符排序规则有关的。 对于utf8mb4_0900_ai_ci来说,0900代表Unicode 9.0的规范,ai表示accent insensitivity,也就是“不区分音调”,而ci表示case insensitiv…...
Stable Diffusion Webui源码剖析
1、关键python依赖 (1)xformers:优化加速方案。它可以对模型进行适当的优化来加速图片生成并降低显存占用。缺点是输出图像不稳定,有可能比不开Xformers略差。 (2)GFPGAN:它是腾讯开源的人脸修…...
为什么kafka 需要 subscribe 的 group.id?我们是否需要使用 commitSync 手动提交偏移量?
目录 一、为什么需要带有 subscribe 的 group.id二、我们需要使用commitSync手动提交偏移量吗?三、如果我想手动提交偏移量,该怎么做? 一、为什么需要带有 subscribe 的 group.id 消费概念: Kafka 使用消费者组的概念来实现主题的…...
什么是Web应用程序防火墙,WAF与其他网络安全工具差异在哪?
一、什么是Web 应用程序防火墙 (WAF) ? WAF软件产品被广泛应用于保护Web应用程序和网站免受威胁或攻击,它通过监控用户、应用程序和其他互联网来源之间的流量,有效防御跨站点伪造、跨站点脚本(XSS攻击)、SQL注入、DDo…...
打家劫舍 II——力扣213
动规 int robrange(vector<int>& nums, int start, int end){int first=nums[start]...
动手学深度学习—卷积神经网络LeNet(代码详解)
1. LeNet LeNet由两个部分组成: 卷积编码器:由两个卷积层组成;全连接层密集块:由三个全连接层组成。 每个卷积块中的基本单元是一个卷积层、一个sigmoid激活函数和平均汇聚层;每个卷积层使用55卷积核和一个sigmoid激…...
腾讯面经总结
最近在准备面试,看了很多大厂的面经,抽空将腾讯面试的题目整理了一下,希望对大家有所帮助~ 一面 1、mysql索引结构? 2、redis持久化策略? 3、zookeeper节点类型说一下; 4、zookeeper选举机制ÿ…...
matlab机器人工具箱基础使用
资料:https://blog.csdn.net/huangjunsheng123/article/details/110630665 用vscode直接看工具箱api代码比较方便,代码说明很多 一、模型设置 1、基础效果 %采用机器人工具箱进行正逆运动学验证 a[0,-0.3,-0.3,0,0,0];%DH参数 d[0.05,0,0,0.06,0.05,…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
JVM 内存结构 详解
内存结构 运行时数据区: Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器: 线程私有,程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 每个线程都有一个程序计数…...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
给网站添加live2d看板娘
给网站添加live2d看板娘 参考文献: stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下,文章也主…...
