Kafka如何解决消息丢失的问题
在 Kafka 的整个架构中可以总结出消息有三次传递的过程:
- Producer 端发送消息给 Broker 端
- Broker 将消息进行并持久化数据
- Consumer 端从 Broker 将消息拉取并进行消费
在以上这三步中每一步都可能会出现丢失数据的情况, 那么 Kafka 到底在什么情况下才能保证消息不丢失呢?
Producer 端丢失
Producer 端为了提升发送效率,减少 IO 操作,发送消息的时候是将多个请求异步发送出去,所以 Producer 端消息丢失更多是因为消息根本就没有发送到 Broker 端。
导致 Producer 端没有发送消息成功的有以下原因:
- 网络原因:由于网络抖动导致数据没发到 Broker 端
- 数据原因:消息体太大超出 Broker 承受范围导致 Broker 拒收消息
解决方案
Producer 端数据丢失是因为通过异步的方式进行发送的,所以如果此时使用发后即焚的方式发送,即调用 Producer.send(msg) 会立即返回,由于没有回调,可能因网络原因导致 Broker 并没有收到消息,此时就丢失了。
因此可以从以下几方面进行解决 Producer 端消息丢失问题:
- 使用带回调通知函数的方法进行发送消息
- ACK 确认机制
- 重试次数
Producer 端通过 ACK 配置来确认消息是否生产成功,配置参数如下:
- 0:由于发送后就自认为发送成功,这时如果发生网络抖动,会造成数据丢失
- 1:消息发送 Leader 分区并接收成功就表示发送成功,只要 Leader 分区不挂掉,就可以保证数据不丢数据,但是如果 Leader 分区挂掉了,Follower 分区还未同步完数据且没有 ACK,这时就会丢数据
- -1 或者 all: 消息发送需要等待 ISR 中 Leader 分区和所有的 Follower 分区都确认收到消息才算发送成功, 可靠性最高,但也不能保证不丢数据,比如:当 ISR 中只有 Leader 分区, 这样就变成 acks = 1 的情况了
Broker 端丢失
Broker 接收到数据后会将消息进行持久化到磁盘存储,为了提高吞吐量和性能,采用的是异步批量刷盘的策略,也就是说按照一定的消息量和间隔时间进行刷盘。
首先会将数据存储到 PageCache 中,至于什么时候将 Cache 中的数据刷盘是由操作系统根据自己的策略决定或者调用 fsync 命令进行强制刷盘。如果在同步到 Follower 分区前 Broker 宕机掉,且选举了一个新的 Leader 分区,那么落后的消息数据就会丢失。
既然 Broker 端消息存储是通过异步批量刷盘的,那么就有可能会丢数据。由于 Kafka 中并没有提供同步刷盘的方式,所以单个 Broker 还是很有可能丢失数据的。
kafka 通过多分区多副本机制已经可以最大限度的保证数据不丢失,如果数据已经写入 PageCache 中但是还没来得及刷写到磁盘,此时如果所在 Broker 突然宕机挂掉或者停电,极端情况还是会造成数据丢失。
解决方案
Broker 端丢失消息是因为通过异步批量刷盘的策略,先将数据存储到 PageCache,再进行异步刷盘。
因此 Kafka 是通过多分区多副本的方式来最大限度的保证数据不丢失。可以通过以下参数配合来保证:
- unclean.leader.election.enable:该参数表示有哪些 Follower 可以有资格被选举为 Leader , 如果一个 Follower 的数据落后 Leader 太多,那么一旦它被选举为新的 Leader, 数据就会丢失,因此我们要将其设置为false,防止此类情况发生。
- replication.factor:该参数表示分区副本的个数。建议设置 replication.factor >=3, 这样如果 Leader 副本挂掉,Follower 副本会被选举为新的 Leader 副本继续提供服务。
- min.insync.replicas:该参数表示消息至少要被写入成功到 ISR 多少个副本才算”已提交”,建议设置min.insync.replicas > 1, 这样才可以提升消息持久性,保证数据不丢失。
另外还需要确保一下 replication.factor > min.insync.replicas,如果相等,只要有一个副本挂掉,整个分区就无法正常工作了,因此推荐设置成: replication.factor = min.insync.replicas +1, 最大限度保证系统可用性。
Consumer 端丢失
消息消费流程主要分为两个阶段:
- 从 Broker 上拉取数据
- 处理消息,并提交 Offset 记录
Consumer 拉取后消息后需要提交 Offset, 那么这里就可能会丢数据的。丢失原因如下:
- 可能使用的自动提交 Offset 方式
- 拉取消息后先提交 Offset,后处理消息,如果此时处理消息的时候异常宕机,由于 Offset 已经提交了, 待 Consumer 重启后,会从之前已提交的 Offset 下一个位置重新开始消费, 之前未处理完成的消息不会被再次处理,对于该 Consumer 来说消息就丢失了。
- 拉取消息后先处理消息,在进行提交 Offset, 如果此时在提交之前发生异常宕机,由于没有提交成功 Offset, 待下次 Consumer 重启后还会从上次的 Offset 重新拉取消息,不会出现消息丢失的情况, 但是会出现重复消费的情况,这里只能业务自己保证幂等性。
解决方案
Consumer 端丢失消息是因为在拉取完消息后提交 Offset 造成的,因此为了不丢数据,正确的做法是:拉取数据、业务逻辑处理、提交消费 Offset 位移信息。
同时还需要设置参数 enable.auto.commit = false,采用手动提交位移的方式。另外对于消费消息重复的情况,业务自己保证幂等性, 保证只成功消费一次即可。
相关文章:
Kafka如何解决消息丢失的问题
在 Kafka 的整个架构中可以总结出消息有三次传递的过程: Producer 端发送消息给 Broker 端Broker 将消息进行并持久化数据Consumer 端从 Broker 将消息拉取并进行消费 在以上这三步中每一步都可能会出现丢失数据的情况, 那么 Kafka 到底在什么情况下才…...
我只记得512天在CSDN的日子
机缘 不知不觉开始写博客已经512天了,在这期间有过因为懒惰想要放弃,也有过写不出优质文章没有阅读量的气馁,也有过学习蛮久却不知道从何开始写起的迷茫,但是最终好在还是坚持了下来,无论好坏坚持总没有错。 写博客的…...
pycharm,VSCode 几个好用的插件
pycharm Tabnine AI Code 可以在编写程序的时候为你提供一些快捷方式,增加编程速度 Chinese 对英文不好的程序员来说是个不错的选择,可以将英文状态下的pycharm变为中文版的 ChatGPT 可以跟ai聊天,ai可以解决你80%的问题 ,也可以帮…...
springboot 使用zookeeper实现分布式ID
添加ZooKeeper依赖:在pom.xml文件中添加ZooKeeper客户端的依赖项。例如,可以使用Apache Curator作为ZooKeeper客户端库: <dependency><groupId>org.apache.curator</groupId><artifactId>curator-framework</arti…...
git cherry-pick
cherry-pick命令的基本用法 对于多分支的代码库,将代码从一个分支转移到另一个分支是常见需求。这时分两种情况。一种情况是,你需要另一个分支的所有代码变动,那么就采用合并( git merge )。另一种情况是,…...
转行软件测试四个月学习,第一次面试经过分享
我是去年上半年从销售行业转行到测试的,从销售公司辞职之后选择去培训班培训软件测试,经历了四个月左右的培训,在培训班结课前两周就开始投简历了,在结课的时候顺利拿到了offer。在新的公司从事软件测试工作已经将近半年有余&…...
ECS服务器安装docker
为了安装并配置 Docker ,你的系统必须满足下列最低要求: 64 位 Linux 或 Windows 系统 如果使用 Linux ,内核版本必须不低于 3.10 能够使用 sudo 权限的用户 在你系统 BIOS 上启用了 VT(虚拟化技术)支持 on your s…...
高等数学教材啃书汇总重难点(三)微分中值定理与导数的应用
本章节包含多个知识点,一些列微分中值定理是考研证明题的重头戏,而洛必达和泰勒展开则是方法论的天花板难度,虽然对于小题的考察难度较低,整体上仍需重点复习 1.费马引理 2.罗尔定理 3.拉格朗日定理 4.柯西中值定理 5.洛必达法则 …...
域名列表是什么?
域名列表指的是一个网站上所使用的所有域名地址。在互联网发展的今天,拥有一个有效的域名列表对于一个企业或组织来说是非常重要的。本文将围绕着域名列表这一主题展开,并从以下几个方面进行分析。 一、为什么需要域名列表? 首先࿰…...
数据库操作不再困难,MyBatis动态Sql标签解析
系列文章目录 MyBatis缓存原理 Mybatis的CachingExecutor与二级缓存 Mybatis plugin 的使用及原理 MyBatis四大组件Executor、StatementHandler、ParameterHandler、ResultSetHandler 详解 MyBatisSpringboot 启动到SQL执行全流程 数据库操作不再困难,MyBatis动态S…...
Android 网络编程-网络请求
Android 网络编程-网络请求 文章目录 Android 网络编程-网络请求一、主要内容二、开发网络请求前的基本准备1、查看需要请求的网址是否有效(1)通过网页在线验证(2)使用专用window网咯请求工具(3)编写app代码…...
Mac下全选,使用pynput,怎样调用command键?
Key.command 不行,用Key.cmd 。 win或linux下: with keyboard.pressed(Key.ctrl):keyboard.press(a)time.sleep(1)keyboard.release(a) 那么在mac下就是: with keyboard.pressed(Key.cmd):keyboard.press(a)time.sleep(1)keyboard.rel…...
21款美规奔驰GLS450更换中规高配主机,汉化操作更简单
很多平行进口的奔驰GLS都有这么一个问题,原车的地图在国内定位不了,语音交互功能也识别不了中文,原厂记录仪也减少了,使用起来也是很不方便的。 可以实现以下功能: ①中国地图 ②语音小助手(你好…...
R语言ggplot2 | R语言绘制物种组成面积图(三)
📋文章目录 面积图简介准备数据集加载数据集数据处理数据可视化 利用R语言绘制物种组成图。本文以堆叠面积图的方式与大家分享。 面积图简介 面积图又叫区域图。它是在折线图的基础之上形成的, 它将折线图中折线与自变量坐标轴之间的区域使用颜色或者纹理填充&…...
数据统计与可视化的Dash应用程序
在数据分析和可视化领域,Dash是一个强大的工具,它结合了Python中的数据处理库(如pandas)和交互式可视化库(如Plotly)以及Web应用程序开发框架。本文将介绍如何使用Dash创建一个简单的数据统计和可视化应用程…...
解决并发冲突:Java实现MySQL数据锁定策略
在并发环境下,多个线程同时对MySQL数据库进行读写操作可能会导致数据冲突和不一致的问题。为了解决这些并发冲突,我们可以采用数据锁定策略来保证数据的一致性和完整性。下面将介绍如何使用Java实现MySQL数据锁定策略,以及相关的注意事项和最…...
C++——函数重载及底层原理
函数重载的定义 函数重载: 是函数的一种特殊情况,C允许在同一作用域重声明几个功能类似的同名函数,这些同名函数的形参列表(参数个数或者类型,类型的顺序)不同,常用来处理实现功能类似数据结构…...
Ceph入门到精通-Aws Iam(user,role,group,policy,resource)架构图和快速入门
-- Aws Iam(identity,user,role,group,policy,resource,)架构图和快速入门. 【官网】:Cloud Computing Services - Amazon Web Services (AWS) 应用场景 aws 云服务运维,devops过程中经常涉及各项服务,权限,角色的处理。 为了更好的使用各项…...
【kubernetes】k8s高可用集群搭建(三主三从)
目录 【kubernetes】k8s高可用集群搭建(三主三从) 一、服务器设置 二、环境配置 1、关闭防火墙 2、关闭selinux 3、关闭swap 4、修改主机名(根据主机角色不同,做相应修改) 5、主机名映射 6、将桥接的IPv4流量…...
凸优化基础学习——凸集
凸优化基础学习——凸集 文章内容全部来自对Stephen Boyd and Lieven vandenberghe的Convex Optimization的总结归纳。 电子书资源: 链接:https://pan.baidu.com/s/1dP5zI6h3BEyGRzSaJHSodg?pwd0000 提取码:0000 基本概念 仿射集合 **…...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
