当前位置: 首页 > news >正文

筛法求欧拉函数

思路:

(1)若要分别求1~n每个数的欧拉函数值,则复杂度O(n*n^0.5),超时;

(2)于是考虑用欧拉筛进行求取;

(3)欧拉筛:基于线性筛,在筛质数与合数过程中,递推求取欧拉值:

  1. 对于质数x,欧拉值为x - 1,因为除其自身外,1~n - 1均与其互质;
  2. 对于合数i,如果i%primes[j] == 0,则i*primes[j]与i质因子相同,于是有ph[i*primes[j] ] = ph[i]*primes[j];如果i%primes[j] != 0;则i*primes[j]与i质因子差一个质数primes[j],于是有ph[i*primes[j] ] = ph[i]*(primes[j] - 1)/primes[j] *primes[j];

代码:

#include<bits/stdc++.h>using namespace std;
typedef long long LL;
const int N = 1e6 + 10;
LL primes[N],ph[N],st[N],cnt;void euler(int n)
{ph[1] = 1;for(int i = 2;i <= n;i ++){if(st[i] == 0){primes[cnt ++] = i;ph[i] = i  - 1;}for(int j = 0; primes[j]*i <= n;j ++){st[primes[j] * i ] = 1;if(i % primes[j] == 0){ph[primes[j] * i] = ph[i] * primes[j];break;}ph[primes[j] * i] = ph[i] * (primes[j] - 1);}}LL res = 0;for(int i = 1;i <= n;i ++){res += ph[i];}cout << res;
}int main()
{int n;cin >> n;euler(n);return 0;
}

相关文章:

筛法求欧拉函数

思路&#xff1a; &#xff08;1&#xff09;若要分别求1~n每个数的欧拉函数值&#xff0c;则复杂度O&#xff08;n*n^0.5)&#xff0c;超时&#xff1b; &#xff08;2&#xff09;于是考虑用欧拉筛进行求取&#xff1b; &#xff08;3&#xff09;欧拉筛&#xff1a;基于线…...

consul限制注册的ip

假设当前服务器的ip是&#xff1a;192.168.56.130 1、允许 所有ip 注册(验证可行) consul agent -server -ui -bootstrap-expect1 -data-dir/usr/local/consul -nodedevmaster -advertise192.168.56.130 -bind0.0.0.0 -client0.0.0.0 2、只允许 当前ip 注册 consul agent -…...

用AI攻克“智能文字识别创新赛题”,这场大学生竞赛掀起了什么风潮?

文章目录 一、前言1.1 大赛介绍1.2 项目背景 二、基于智能文字场景个人财务管理创新应用2.1 作品方向2.2 票据识别模型2.2.1 文本卷积神经网络TextCNN2.2.2 Bert 预训练微调2.2.3 模型对比2.2.4 效果展示 2.3 票据文字识别接口 三、未来展望 一、前言 1.1 大赛介绍 中国大学生…...

EJB基本概念和使用

一、EJB是什么&#xff1f; EJB是sun的JavaEE服务器端组件模型&#xff0c;是一种规范&#xff0c;设计目标与核心应用是部署分布式应用程序。EJB2.0过于复杂&#xff0c;EJB3.0的推出减轻了开发人员进行底层开发的工作量&#xff0c;它取消或最小化了很多(以前这些是必须实现)…...

神经网络基础-神经网络补充概念-09-m个样本的梯度下降

概念 当应用梯度下降算法到具有 m 个训练样本的逻辑回归问题时&#xff0c;我们需要对每个样本计算梯度并进行平均&#xff0c;从而更新模型参数。这个过程通常称为批量梯度下降&#xff08;Batch Gradient Descent&#xff09;。 代码实现 import numpy as npdef sigmoid(z…...

分布式 - 消息队列Kafka:Kafka消费者分区再均衡(Rebalance)

文章目录 01. Kafka 消费者分区再均衡是什么&#xff1f;02. Kafka 消费者分区再均衡的触发条件&#xff1f;03. Kafka 消费者分区再均衡的过程&#xff1f;04. Kafka 如何判定消费者已经死亡&#xff1f;05. Kafka 如何避免消费者的分区再均衡?06. Kafka 消费者分区再均衡有什…...

BIO、NIO和AIO

一.引言 何为IO 涉及计算机核心(CPU和内存)与其他设备间数据迁移的过程&#xff0c;就是I/O。数据输入到计算机内存的过程即输入&#xff0c;反之输出到外部存储&#xff08;比如数据库&#xff0c;文件&#xff0c;远程主机&#xff09;的过程即输出。 I/O 描述了计算机系统…...

理解 Go 中的切片:append 操作的深入分析(篇1)

理解 Go 语言中 slice 的性质对于编程非常有益。下面&#xff0c;我将通过两个代码示例来解释切片在不同函数之间传递并执行 append 操作时的具体表现。 本篇为第 1 篇&#xff0c;当切片的容量 cap 充足时 第一份代码 slice1 的初始长度为 3&#xff0c;容量为 10 func main()…...

由于找不到mfc140u.dll,无法继续执行代码怎么修复?

当我在使用某个应用程序时遇到了mfc140u.dll缺失的错误提示时&#xff0c;我意识到这是由于该动态链接库文件丢失或损坏所引起的。mfc140u.dll是MFC的一部分&#xff0c;它包含了许多与用户界面、窗口管理、控件等相关的函数和类。这个文件通常用于支持使用MFC开发的应用程序的…...

【0.1】lubancat鲁班猫4刷入debian网络ping 域名不通问题

目录 1. 环境2. 操作步骤 1. 环境 lubancat4鲁班猫4 (4G0)不带emmc系统镜像lubancat-rk3588-debian11-gnome-20230807_update.img官方资料地址https://doc.embedfire.com/products/link/zh/latest/linux/ebf_lubancat.html 2. 操作步骤 从官网给的百度网盘下载linux系统全部…...

KafkaStream:基本使用

简介&#xff1a; kafkaStream&#xff1a;提供了对存储在kafka中的数据进行流式处理和分析的功能 特点&#xff1a; KafkasSream提供了一个非常简单轻量的Library&#xff0c;它可以非常方便的嵌入到java程序中&#xff0c;也可以任何方式打包部署 入门案例&#xff1a; 1、…...

【数据结构】二叉树

完全二叉树 是指所有结点度数小于等于2的树 所以这种情况也是&#xff1a; 几条性质 一个具有n个结点的完全二叉树的深度为&#xff1a; log ⁡ 2 ( n 1 ) 的结果向上取整。 \\\log_{2}(n1) \ \ 的结果向上取整。 log2​(n1) 的结果向上取整。设度为0的结点个数是n0&#…...

基于灰狼优化(GWO)、帝国竞争算法(ICA)和粒子群优化(PSO)对梯度下降法训练的神经网络的权值进行了改进(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

jenkins自动化构建保姆级教程(持续更新中)

1.安装 1.1版本说明 访问jenkins官网 https://www.jenkins.io/&#xff0c;进入到首页 点击【Download】按钮进入到jenkins下载界面 左侧显示的是最新的长期支持版本&#xff0c;右侧显示的是最新的可测试版本&#xff08;可能不稳定&#xff09;&#xff0c;建议使用最新的…...

HTTPS 的加密流程

目录 一、HTTPS是什么&#xff1f; 二、为什么要加密 三、"加密" 是什么 四、HTTPS 的工作过程 1.对称加密 2.非对称加密 3.中间人攻击 4.证书 总结 一、HTTPS是什么&#xff1f; HTTPS (Hyper Text Transfer Protocol Secure) 是基于 HTTP 协议之上的安全协议&…...

Jmeter 参数化的几种方法

目录 配置元件-用户自定义变量 前置处理器-用户参数 配置元件-CSV Data Set Config Tools-函数助手 配置元件-用户自定义变量 可在测试计划、线程组、HTTP请求下创建用户定义的变量 全局变量&#xff0c;可以跨线程组调用 jmeter执行的时候&#xff0c;只获取一次&#xff0…...

剑指Offer45.把数组排成最小的数 C++

1、题目描述 输入一个非负整数数组&#xff0c;把数组里所有数字拼接起来排成一个数&#xff0c;打印能拼接出的所有数字中最小的一个。 示例 1: 输入: [10,2] 输出: “102” 示例 2: 输入: [3,30,34,5,9] 输出: “3033459” 2、VS2019上运行 先转换成字符串再组合起来 #in…...

【java毕业设计】基于SSM+MySql的人才公寓管理系统设计与实现(程序源码)--人才公寓管理系统

基于SSMMySql的人才公寓管理系统设计与实现&#xff08;程序源码毕业论文&#xff09; 大家好&#xff0c;今天给大家介绍基于SSMMySql的人才公寓管理系统设计与实现&#xff0c;本论文只截取部分文章重点&#xff0c;文章末尾附有本毕业设计完整源码及论文的获取方式。更多毕业…...

golang操作excel的高性能库——excelize/v2

目录 介绍文档与源码安装快速开始创建 Excel 文档读取 Excel 文档打开数据流流式写入 [相关 Excel 开源类库性能对比](https://xuri.me/excelize/zh-hans/performance.html) 介绍 Excelize是一个纯Go编写的库&#xff0c;提供了一组功能&#xff0c;允许你向XLAM / XLSM / XLS…...

学习51单片机怎么开始?

学习的过程不总是先打好基础&#xff0c;然后再盖上层建筑&#xff0c;尤其是实践性的、工程性很强的东西。如果你一定要先全面打好基础&#xff0c;再学习单片机&#xff0c;我觉得你一定学不好&#xff0c;因为你的基础永远打不好&#xff0c;因为基础太庞大了&#xff0c;基…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候&#xff0c;难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵&#xff0c;或者买了二手 iPhone 却被原来的 iCloud 账号锁住&#xff0c;这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...