opencv实现以图搜图
这里写目录标题
- 1. 步骤
- 1.1 导入OpenCV库:
- 1.2 加载图像
- 1.3 提取特征
- 1.4 匹配特征
- 1.5 显示结果
- 2. 完整代码
- 3. 测试图片及效果
1. 步骤
1.1 导入OpenCV库:
在您的C++代码中,首先需要导入OpenCV库。您可以使用以下语句导入核心模块:
#include <opencv2/core/core.hpp>
1.2 加载图像
使用OpenCV的 imread 函数加载要搜索的图像和目标图像。例如,假设您要搜索的图像是"search_image.jpg",目标图像是"target_image.jpg",您可以使用以下代码加载它们:
cpp
cv::Mat searchImage = cv::imread("search_image.jpg");
cv::Mat targetImage = cv::imread("target_image.jpg");
1.3 提取特征
使用OpenCV的特征提取方法(如SIFT、SURF或ORB)从目标图像中提取特征。例如,使用SIFT算法可以提取特征,您可以使用以下代码:
cv::Ptr<cv::SIFT> sift = cv::SIFT::create();
cv::Mat targetDescriptors;
std::vector<cv::KeyPoint> targetKeypoints;
sift->detectAndCompute(targetImage, cv::noArray(), targetKeypoints, targetDescriptors);
1.4 匹配特征
使用提取的特征在搜索图像中寻找匹配。您可以使用OpenCV的特征匹配方法(如FLANN或Brute-Force)进行匹配。以下是一个使用Brute-Force匹配器的示例:
cv::Ptr<cv::DescriptorMatcher> matcher = cv::DescriptorMatcher::create(cv::DescriptorMatcher::BRUTEFORCE);
std::vector<cv::DMatch> matches;
matcher->match(searchDescriptors, targetDescriptors, matches);
1.5 显示结果
根据匹配结果,您可以选择在搜索图像上绘制匹配的关键点或边界框。以下是一个简单的示例,用于在搜索图像上绘制匹配的关键点:
cv::Mat outputImage;
cv::drawMatches(searchImage, searchKeypoints, targetImage, targetKeypoints, matches, outputImage);
cv::imshow("Matches", outputImage);
cv::waitKey(0);
2. 完整代码
#include <opencv2/core/core.hpp>int search_pic_by_pic()
{// 加载查询图像和目标图像cv::Mat queryImage = cv::imread("E:\\code\\Yolov5_Tensorrt_Win10-master\\pictures\\search_pic_by_pic\\1.png");cv::Mat targetImage = cv::imread("E:\\code\\Yolov5_Tensorrt_Win10-master\\pictures\\search_pic_by_pic\\2.png");// 特征提取cv::Ptr<cv::Feature2D> featureExtractor = cv::SIFT::create();cv::Mat queryDescriptors, targetDescriptors;std::vector<cv::KeyPoint> queryKeypoints, targetKeypoints;featureExtractor->detectAndCompute(queryImage, cv::noArray(), queryKeypoints, queryDescriptors);featureExtractor->detectAndCompute(targetImage, cv::noArray(), targetKeypoints, targetDescriptors);// 特征匹配cv::Ptr<cv::DescriptorMatcher> matcher = cv::DescriptorMatcher::create(cv::DescriptorMatcher::FLANNBASED);std::vector<cv::DMatch> matches;matcher->match(queryDescriptors, targetDescriptors, matches);// 根据匹配结果进行排序std::sort(matches.begin(), matches.end(), [](const cv::DMatch& a, const cv::DMatch& b) {return a.distance < b.distance;});float threshold = 200.0;int numMatches = 0;int matches_size = matches.size();vector< cv::DMatch>::iterator it = matches.begin();for (it; it != matches.end();) {if (it->distance < threshold) {numMatches++;it++;}else {it = matches.erase(it);}}float matchRate = static_cast<float>(numMatches) / matches_size * 100.0;std::cout << "Match Rate: " << matchRate << "%" << std::endl;// 显示匹配结果cv::Mat matchedImage;cv::drawMatches(queryImage, queryKeypoints, targetImage, targetKeypoints, matches, matchedImage);cv::imshow("Matched Image", matchedImage);cv::waitKey(0);return 0;
}int main()
{search_pic_by_pic();return 0;
}
3. 测试图片及效果



相关文章:
opencv实现以图搜图
这里写目录标题 1. 步骤1.1 导入OpenCV库:1.2 加载图像1.3 提取特征1.4 匹配特征1.5 显示结果 2. 完整代码3. 测试图片及效果 1. 步骤 1.1 导入OpenCV库: 在您的C代码中,首先需要导入OpenCV库。您可以使用以下语句导入核心模块:…...
爬虫工作中代理失效了怎么处理?
Hey!亲爱的爬虫小伙伴们,是不是经常在爬虫的工作中遇到代理IP失效的问题?别着急,今天我来分享一些应对代理失效的妙招!这些方法简单易行,让你爬虫顺利进行. 一、为什么代理会失效? 在爬虫过程…...
使用虚拟环境conda安装不同版本的cuda,cudnn,pytorch
背景:在学习深度学习时,我们不可避免的需要跑多个神经网络,而不同的神经网络环境都不一样,所以必须要使用到虚拟环境(如conda)去做环境隔离,安装属于自己的环境。在这环境中,大多神经网络都必须要用到cuda&…...
【24择校指南】华东师范大学计算机考研考情分析
华东师范大学(B) 考研难度(☆☆☆☆) 内容:23考情概况(拟录取和复试分数人数统计)、院校概况、23考试科目、23复试详情、各科目及专业考情分析。 正文2563字,预计阅读:3分钟。 2023考情概况…...
什么是LAXCUS分布式操作系统?
相较Linux、Windows,Laxcus是同时在多台计算机上运行的操作系统,处理大规模、高并发、高性能业务,其特点是资源共享和任务并行,并实现【数存算管】超融合一体化。环境中的资源:CPU、GPU、内存、硬盘、网络,…...
Redis数据结构——链表list
链表是一种常用的数据结构,提供了顺序访问的方式,而且高效地增删操作。 Redis中广泛使用了链表,例如:列表的底层实现之一就是链表。 在Redis中,链表分为两部分:链表信息 链表节点。 链表节点用来表示链表…...
[自学记录06|*百人计划]Gamma矫正与线性工作流
一、前言 Gamma矫正其实也属于我前面落下的一块内容,打算把它补上,其它的没补是因为我之前写的GAMES101笔记里已经涵盖了,而Gamma矫正在101里面确实没提到,于是打算把它补上,这块内容并不难,但是想通透的理…...
【数据结构】二叉树链式结构的实现及其常见操作
目录 1.手搓二叉树 2.二叉树的遍历 2.1前序、中序以及后序遍历 2.2二叉树的层序遍历 3.二叉树的常见操作 3.1求二叉树节点数量 3.2求二叉树叶子节点数量 3.3求二叉树第k层节点个数 3.3求二叉树的深度 3.4二叉树查找值为x的节点 4.二叉树的销毁 1.手搓二叉树 在学习…...
从零实战SLAM-第九课(后端优化)
在七月算法报的班,老师讲的蛮好。好记性不如烂笔头,关键内容还是记录一下吧,课程入口,感兴趣的同学可以学习一下。 --------------------------------------------------------------------------------------------------------…...
Python Opencv实践 - 图像金字塔
import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR) print(img.shape)#图像上采样 #cv.pyrUp(src, dstNone, dstsizeNone, borderTypeNone) #参考资料:https://blo…...
Baumer工业相机堡盟工业相机如何通过BGAPI SDK设置相机的固定帧率(C++)
Baumer工业相机堡盟工业相机如何通过BGAPI SDK设置相机的固定帧率(C) Baumer工业相机Baumer工业相机的固定帧率功能的技术背景CameraExplorer如何查看相机固定帧率功能在BGAPI SDK里通过函数设置相机固定帧率 Baumer工业相机通过BGAPI SDK设置相机固定帧…...
计算机竞赛 python+大数据校园卡数据分析
0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 基于yolov5的深度学习车牌识别系统实现 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:4分工作量:4分创新点:3分 该项目较为新颖&am…...
DNNGP模型解读-early stopping 和 batch normalization的使用
一、考虑的因素(仅代表个人观点) 1.首先我们看到他的这篇文章所考虑的不同方面从而做出的不同改进,首先考虑到了对于基因组预测的深度学习方法的设计 ,我们设计出来这个方法就是为了基因组预测而使用,这也是主要目的&…...
【目标检测】目标检测 相关学习笔记
目标检测算法 PASCALVOC2012数据集 挑战赛主要分为 图像分类 目标检测 目标分割 动作识别 数据集分为四个大类 交通(飞机 船 公交车 摩托车) 住房(杯子 椅子 餐桌 沙发) 动物(鸟 猫 奶牛 狗 马 羊) 其他&a…...
面试攻略,Java 基础面试 100 问(十六)
反射使用步骤(获取Class对象、调用对象方法) 获取想要操作的类的Class对象,他是反射的核心,通过Class对象我们可以任意调用类的方法。 调用 Class 类中的方法,既就是反射的使用阶段。 使用反射 API 来操作这些信息。 什么是 java 序列化&…...
章节5:脚本注入网页-XSS
章节5:脚本注入网页-XSS XSS :Cross Site Script 恶意攻击者利用web页面的漏洞,插入一些恶意代码,当用户访问页面的时候,代码就会执行,这个时候就达到了攻击的目的。 JavaScript、Java、VBScript、Activ…...
ATF(TF-A)安全通告 TFV-5 (CVE-2017-15031)
安全之安全(security)博客目录导读 ATF(TF-A)安全通告汇总 目录 一、ATF(TF-A)安全通告 TFV-5 (CVE-2017-15031) 二、CVE-2017-15031 一、ATF(TF-A)安全通告 TFV-5 (CVE-2017-15031) Title 未初始化或保存/恢复PMCR_EL0可能会泄露安全世界的时间信息 CVE ID CVE-2017-1503…...
迅捷视频工具箱:多功能音视频处理软件
这是一款以视频剪辑、视频转换、屏幕录像等特色功能为主,同时附带有视频压缩、视频分割、视频合并等常用视频处理功能为主的视频编辑软件。该软件操作简单易用,即使没有视频处理经验的用户也可以轻松上手。将视频添加到工具箱对应功能后,简单…...
linux--fork()详解
fork() 参考链接:链接 进程控制原语包括:进程的建立、进程的撤销、进程的等待和进程的唤醒。 fork,在英语用译为叉子,形状像Y,反过来就如下图: 就是本来只有一个进行app,然后它调用了fork()函数…...
go_并发编程(1)
go并发编程 一、 并发介绍1,进程和线程2,并发和并行3,协程和线程4,goroutine 二、 Goroutine1,使用goroutine1)启动单个goroutine2)启动多个goroutine 2,goroutine与线程3࿰…...
多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...
第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...
计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...
