当前位置: 首页 > news >正文

Hi-TRS:骨架点视频序列的层级式建模及层级式自监督学习

论文题目:Hierarchically Self-Supervised Transformer for Human Skeleton Representation Learning

论文下载地址:https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136860181.pdf

代码地址:https://github.com/yuxiaochen1103/Hi-TRS/tree/main


层级式建模

整个建模骨架点视频序列的网络架构由三个 Transformer 组成:

  • 对关节点建模空间信息的 Frame-level Transformer (F-TRS)
  • 对序列片段建模短期时序信息的 Clip-leve Transformer (C-TRS)
  • 对整段骨架点视频序列建模长期时序信息的 Video-leve Transformer (V-TRS)

数据在其中是串行流动,即 F-TRS 的输出作为 C-TRS 的输入,以此类推。

Frame-level Transformer (F-TRS)

大家可能更加熟悉对图片进行建模的 Transformer:以 patch 为单位进行 Attention。

在这里,每个 joint 就相当于一个 patch,所以该 Transformer 做的是 joint 和 joint 之间的 Attention。

同时,该 Transformer 还为每个 joint 加上了可学习的位置编码(1D learnable positional embedding)。

Clip-leve Transformer (C-TRS)

在这个 Transformer 里,clip 里的每一帧的每个 joint 都相当于一个 patch。注意和上面的区别,这里 clip 里第 1 帧的左手节点和第 2 帧的左手节点会被认为是不同的 patch。

所以,该 Transformer 的可学习位置编码是二维的(2D learnable positional embedding)。

同时,作者为每个 clip 加上一个 [CLS] token,该 token 就汇聚了 clip 里所有帧里所有节点的信息。这个 token 也就作为该 clip 的 embedding。

Video-leve Transformer (V-TRS)

在这个 Transformer 里,每个 clip 相当于一个 patch,所以该 Transformer 做的是 clip 和 clip 之间的 Attention。

同样,该 Transformer 为每个 clip 加上了可学习的位置编码(1D learnable positional embedding)。

同时,作者为每个 video 加上一个 [CLS] token,该 token 就汇聚了 video 里所有 clips 的信息。这个 token 也就作为该 video 的 embedding。


层级式自监督学习 

可以从上图可知,论文针对不同层级 Transformer 的输出做了不同代理任务的设计。

 

Spatial Pretext task

  • 作用于 Frame-level Transformer 的输出 embeddings
  • 任务类似于 MAE,用不同的策略掩盖掉 15% 的关节点 embeddings。再接上一个全连接层,回归预测出被掩盖掉关节点的坐标。
  • 该任务使用 L1-Loss 去约束预测值与真实值之间的差距。

Temporal Pretext task

  • 分别作用于 Clip-leve Transformer  Video-leve Transformer 的输出 embeddings
  • 简单的二分类任务,判断时序正确与否。当作用于 Clip-leve Transformer 时,可能打乱 clip 中任意两帧 embeddings,也有可能不打乱,再接上一个全连接层,让其判断打乱与否;当作用于 Video-leve Transformer 时,可能打乱任意两个 clip embeddings 的顺序,也有可能不打乱,再接上一个全连接层,让其判断打乱与否;
  • 用交叉熵损失函数约束任务的进行。

Discriminative Pretext task 

  • 作用于 Video-level Transformer 的输出 embeddings
  • 该任务是生成式任务,结合前几个 clip 的 embeddings 去预测最后一个 clip 的 embedding。同样通过接上一个全连接层,让其回归出最后一个 clip 的 embedding。
  • 使用 InfoNCE Loss 来约束任务的进行。正样本对为最后一个 clip 的预测 embedding 和真实 embedding;负样本为同一个 batch 里其他 skeleton sequences 最后一个 clip 的真实 embedding


如果觉得有帮到你的话,可以点击右下方的“打赏”按钮~您的支持是我创作的最大动力呀~

 

相关文章:

Hi-TRS:骨架点视频序列的层级式建模及层级式自监督学习

论文题目:Hierarchically Self-Supervised Transformer for Human Skeleton Representation Learning 论文下载地址:https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136860181.pdf 代码地址:https://github.com/yuxiaochen1103…...

FPGA 之 xilinx DDS IP相位控制字及频率控制字浅析

浅析相位环在Xilinx DDS中的理解 本文仅为个人理解之用; 相关仿真结果如下:...

[鹏城杯 2022]简单包含

直接用php:// 有wtf 加脏数据绕过...

Required request parameter ‘XXX‘ for method parameter type XXX is not present问题

今日工作中遇到很奇葩的问题,用翻译软件翻译结果为 方法参数类型XXX所需的请求参数XXX不存在 也就是说前端没有给后端传值 后端的接收方式为 public Result demo(RequestParam("id") String id){}...

centOS 快速安装和配置 NVIDIA docker Container Toolkit

要在 CentOS 上正确安装和配置 NVIDIA Container Toolkit,您可以按照以下步骤进行操作,如果1和2都已经完成,可以直接进行第3步NVIDIA Container Toolkit安装配置。 1. 安装 NVIDIA GPU 驱动程序: 您可以从 NVIDIA 官方网站下载适…...

编程练习(2)

一.选择题 第一题: 考察转义字符和strlen函数求解字符串长度 进一步在VS中可以智能看出哪些字符是转义字符: 因此本体答案选择B 第二题: 本体较为简单,宏定义了三个数N,M,NUM,N值为2,M值为3,因此NUM值为8,…...

利用Figlet工具创建酷炫Linux Centos8服务器-登录欢迎界面-SHELL自动化编译安装代码

因为我们需要生成需要的特定字符,所以需要在当前服务器中安装Figlet,默认没有安装包的,其实如果我们也只要在一台环境中安装,然后需要什么字符只要复制到需要的服务器中,并不需要所有都安装。同样的,我们也可以利用此生成的字符用到脚本运行的开始起头部分,用ECHO分行标…...

Git Cherry-pick使用

概述 无论项目大小,当你和一群程序员一起工作时,处理多个 Git 分支之间的变更都会变得很困难。有时,与其把整个 Git 分支合并到另一个分支,不如选择并移动几个特定的提交。这个过程被称为 "挑拣", 即 Cherry-pick。 本…...

红帽8.5 ansible 安装和部署 |(简单版)

什么是ansible Ansible是一款基于OpenSSH开源的自动化运维工具,可以用它来配置系统、部署软件和编排更高级的 IT 任务,并且使用具有极高的安全性,ansible是当前市面上主流的自动化运维工具之一 为什么使用ansible 比较直观的说,…...

Visual Studio 2019 c++ 自定义注释 ----doxygen

可加入C 也可自定义。 <?xml version"1.0" encoding"utf-8"?> <CodeSnippets xmlns"http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet"><CodeSnippet Format"1.0.0"><Header><Title>注释…...

面试题. 零矩阵

编写一种算法&#xff0c;若M N矩阵中某个元素为0&#xff0c;则将其所在的行与列清零。 示例 1&#xff1a; 输入&#xff1a; [[1,1,1],[1,0,1],[1,1,1] ] 输出&#xff1a; [[1,0,1],[0,0,0],[1,0,1] ] 示例 2&#xff1a; 输入&#xff1a; [[0,1,2,0],[3,4,5,2],[1,3…...

易语言下载器

静态网站整站下载器 https://bbs.125.la/forum.php?modviewthread&tid14791313&highlight%E4%B8%8B%E8%BD%BD%E5%99%A8 易语言 之音乐下载器 https://blog.51cto.com/u_15309652/3153642 &#xff08;File Download Assistant&#xff09;下载链接&#xff1a;https…...

原生js获取今天、昨天、近7天的时间(年月日时分秒)

有的时候我们需要将今天,昨天,近7天的时间(年月日时分秒)作为参数传递给后端,如下图: 那怎么生成这些时间呢?如下代码里,在methods里的toDay方法、yesterDay方法、weekDay方法分别用于生成今天、昨天和近7天的时间: <template><div class="box"&…...

最强自动化测试框架Playwright(29)-文件选择对象

FileChooser对象通过page.on("filechoose")事件监听。 如下代码实现点击百度搜图按钮&#xff0c;上传文件进行搜索。 from playwright.sync_api import Playwright, sync_playwright, expectdef run(playwright: Playwright) -> None:browser playwright.chro…...

【烂尾】K8S部署

0x01 初见K8S 在地下城的迷宫深处&#xff0c;有一个神奇的存在&#xff0c;它就是Kubernetes&#xff01;宛如一个勇敢的冒险者&#xff0c;它穿越着这个复杂的迷宫&#xff0c;带领着容器们战胜各种惊险的挑战。 Kubernetes就像是一位无所畏惧的剑士&#xff0c;手握着强大…...

电机故障诊断(python程序,模型为MSCNN结合LSTM结合注意力机制模型,有注释)

代码运行环境要求&#xff1a;TensorFlow版本>2.4.0&#xff0c;python版本>3.6.0 1.电机常见的故障类型有以下几种&#xff1a; 轴承故障&#xff1a;轴承是电机运转时最容易受损的部件之一。常见故障包括磨损、疲劳、过热和润滑不良&#xff0c;这些问题可能导致噪音增…...

二叉树(ACM版)

【数据结构1-2】二叉树 - 题单 - 洛谷 【数据结构】day2-树_J娇娇_的博客-CSDN博客 上学时的作业 P1827 [USACO3.4] 美国血统 American Heritage 二叉树特点写法&#xff08;非二叉树&#xff09; 截取字符串写法 #include<string> #include<cstring> #include…...

Scratch 之 如何制作鼠标框(2)—— 鼠标框框定角色

hello&#xff0c;大家好&#xff0c;欢迎来到鼠标框系列的第二课时&#xff01; 咱们废话不多说&#xff0c;直接开始 首先&#xff0c;温故知新一下&#xff0c;上个教程我们讨论了如何绘制鼠标框&#xff0c;网址&#xff1a;绘制鼠标框 你说&#xff0c;一个鼠标框&…...

爬虫逆向实战(九)--猿人学第十三题

一、数据接口分析 主页地址&#xff1a;猿人学第十三题 1、抓包 通过抓包可以发现数据接口是api/match/13 2、判断是否有加密参数 请求参数是否加密&#xff1f; 无请求头是否加密&#xff1f; 无响应是否加密&#xff1f; 无cookie是否加密&#xff1f; 在“cookie”模块…...

NeuralNLP-NeuralClassifier的使用记录(一),训练预测自己的【英文文本多分类】

NeuralNLP-NeuralClassifier的使用记录&#xff0c;训练预测自己的英文文本多分类 NeuralNLP-NeuralClassifier是腾讯开发的一个多层多分类应用工具&#xff0c;支持的任务包括&#xff0c;文本分类中的二分类、多分类、多标签&#xff0c;以及层次多标签分类。支持的文本编码…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

JavaScript 数据类型详解

JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型&#xff08;Primitive&#xff09; 和 对象类型&#xff08;Object&#xff09; 两大类&#xff0c;共 8 种&#xff08;ES11&#xff09;&#xff1a; 一、原始类型&#xff08;7种&#xff09; 1. undefined 定…...

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像&#xff08;比如分辨率3000*3000的图像&#xff09;的办法&#xff0c;尤其是想把内存中的裸数据&#xff08;只有图像的数据&#xff0c;不包…...

【C++】纯虚函数类外可以写实现吗?

1. 答案 先说答案&#xff0c;可以。 2.代码测试 .h头文件 #include <iostream> #include <string>// 抽象基类 class AbstractBase { public:AbstractBase() default;virtual ~AbstractBase() default; // 默认析构函数public:virtual int PureVirtualFunct…...