当前位置: 首页 > news >正文

Hi-TRS:骨架点视频序列的层级式建模及层级式自监督学习

论文题目:Hierarchically Self-Supervised Transformer for Human Skeleton Representation Learning

论文下载地址:https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136860181.pdf

代码地址:https://github.com/yuxiaochen1103/Hi-TRS/tree/main


层级式建模

整个建模骨架点视频序列的网络架构由三个 Transformer 组成:

  • 对关节点建模空间信息的 Frame-level Transformer (F-TRS)
  • 对序列片段建模短期时序信息的 Clip-leve Transformer (C-TRS)
  • 对整段骨架点视频序列建模长期时序信息的 Video-leve Transformer (V-TRS)

数据在其中是串行流动,即 F-TRS 的输出作为 C-TRS 的输入,以此类推。

Frame-level Transformer (F-TRS)

大家可能更加熟悉对图片进行建模的 Transformer:以 patch 为单位进行 Attention。

在这里,每个 joint 就相当于一个 patch,所以该 Transformer 做的是 joint 和 joint 之间的 Attention。

同时,该 Transformer 还为每个 joint 加上了可学习的位置编码(1D learnable positional embedding)。

Clip-leve Transformer (C-TRS)

在这个 Transformer 里,clip 里的每一帧的每个 joint 都相当于一个 patch。注意和上面的区别,这里 clip 里第 1 帧的左手节点和第 2 帧的左手节点会被认为是不同的 patch。

所以,该 Transformer 的可学习位置编码是二维的(2D learnable positional embedding)。

同时,作者为每个 clip 加上一个 [CLS] token,该 token 就汇聚了 clip 里所有帧里所有节点的信息。这个 token 也就作为该 clip 的 embedding。

Video-leve Transformer (V-TRS)

在这个 Transformer 里,每个 clip 相当于一个 patch,所以该 Transformer 做的是 clip 和 clip 之间的 Attention。

同样,该 Transformer 为每个 clip 加上了可学习的位置编码(1D learnable positional embedding)。

同时,作者为每个 video 加上一个 [CLS] token,该 token 就汇聚了 video 里所有 clips 的信息。这个 token 也就作为该 video 的 embedding。


层级式自监督学习 

可以从上图可知,论文针对不同层级 Transformer 的输出做了不同代理任务的设计。

 

Spatial Pretext task

  • 作用于 Frame-level Transformer 的输出 embeddings
  • 任务类似于 MAE,用不同的策略掩盖掉 15% 的关节点 embeddings。再接上一个全连接层,回归预测出被掩盖掉关节点的坐标。
  • 该任务使用 L1-Loss 去约束预测值与真实值之间的差距。

Temporal Pretext task

  • 分别作用于 Clip-leve Transformer  Video-leve Transformer 的输出 embeddings
  • 简单的二分类任务,判断时序正确与否。当作用于 Clip-leve Transformer 时,可能打乱 clip 中任意两帧 embeddings,也有可能不打乱,再接上一个全连接层,让其判断打乱与否;当作用于 Video-leve Transformer 时,可能打乱任意两个 clip embeddings 的顺序,也有可能不打乱,再接上一个全连接层,让其判断打乱与否;
  • 用交叉熵损失函数约束任务的进行。

Discriminative Pretext task 

  • 作用于 Video-level Transformer 的输出 embeddings
  • 该任务是生成式任务,结合前几个 clip 的 embeddings 去预测最后一个 clip 的 embedding。同样通过接上一个全连接层,让其回归出最后一个 clip 的 embedding。
  • 使用 InfoNCE Loss 来约束任务的进行。正样本对为最后一个 clip 的预测 embedding 和真实 embedding;负样本为同一个 batch 里其他 skeleton sequences 最后一个 clip 的真实 embedding


如果觉得有帮到你的话,可以点击右下方的“打赏”按钮~您的支持是我创作的最大动力呀~

 

相关文章:

Hi-TRS:骨架点视频序列的层级式建模及层级式自监督学习

论文题目:Hierarchically Self-Supervised Transformer for Human Skeleton Representation Learning 论文下载地址:https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136860181.pdf 代码地址:https://github.com/yuxiaochen1103…...

FPGA 之 xilinx DDS IP相位控制字及频率控制字浅析

浅析相位环在Xilinx DDS中的理解 本文仅为个人理解之用; 相关仿真结果如下:...

[鹏城杯 2022]简单包含

直接用php:// 有wtf 加脏数据绕过...

Required request parameter ‘XXX‘ for method parameter type XXX is not present问题

今日工作中遇到很奇葩的问题,用翻译软件翻译结果为 方法参数类型XXX所需的请求参数XXX不存在 也就是说前端没有给后端传值 后端的接收方式为 public Result demo(RequestParam("id") String id){}...

centOS 快速安装和配置 NVIDIA docker Container Toolkit

要在 CentOS 上正确安装和配置 NVIDIA Container Toolkit,您可以按照以下步骤进行操作,如果1和2都已经完成,可以直接进行第3步NVIDIA Container Toolkit安装配置。 1. 安装 NVIDIA GPU 驱动程序: 您可以从 NVIDIA 官方网站下载适…...

编程练习(2)

一.选择题 第一题: 考察转义字符和strlen函数求解字符串长度 进一步在VS中可以智能看出哪些字符是转义字符: 因此本体答案选择B 第二题: 本体较为简单,宏定义了三个数N,M,NUM,N值为2,M值为3,因此NUM值为8,…...

利用Figlet工具创建酷炫Linux Centos8服务器-登录欢迎界面-SHELL自动化编译安装代码

因为我们需要生成需要的特定字符,所以需要在当前服务器中安装Figlet,默认没有安装包的,其实如果我们也只要在一台环境中安装,然后需要什么字符只要复制到需要的服务器中,并不需要所有都安装。同样的,我们也可以利用此生成的字符用到脚本运行的开始起头部分,用ECHO分行标…...

Git Cherry-pick使用

概述 无论项目大小,当你和一群程序员一起工作时,处理多个 Git 分支之间的变更都会变得很困难。有时,与其把整个 Git 分支合并到另一个分支,不如选择并移动几个特定的提交。这个过程被称为 "挑拣", 即 Cherry-pick。 本…...

红帽8.5 ansible 安装和部署 |(简单版)

什么是ansible Ansible是一款基于OpenSSH开源的自动化运维工具,可以用它来配置系统、部署软件和编排更高级的 IT 任务,并且使用具有极高的安全性,ansible是当前市面上主流的自动化运维工具之一 为什么使用ansible 比较直观的说,…...

Visual Studio 2019 c++ 自定义注释 ----doxygen

可加入C 也可自定义。 <?xml version"1.0" encoding"utf-8"?> <CodeSnippets xmlns"http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet"><CodeSnippet Format"1.0.0"><Header><Title>注释…...

面试题. 零矩阵

编写一种算法&#xff0c;若M N矩阵中某个元素为0&#xff0c;则将其所在的行与列清零。 示例 1&#xff1a; 输入&#xff1a; [[1,1,1],[1,0,1],[1,1,1] ] 输出&#xff1a; [[1,0,1],[0,0,0],[1,0,1] ] 示例 2&#xff1a; 输入&#xff1a; [[0,1,2,0],[3,4,5,2],[1,3…...

易语言下载器

静态网站整站下载器 https://bbs.125.la/forum.php?modviewthread&tid14791313&highlight%E4%B8%8B%E8%BD%BD%E5%99%A8 易语言 之音乐下载器 https://blog.51cto.com/u_15309652/3153642 &#xff08;File Download Assistant&#xff09;下载链接&#xff1a;https…...

原生js获取今天、昨天、近7天的时间(年月日时分秒)

有的时候我们需要将今天,昨天,近7天的时间(年月日时分秒)作为参数传递给后端,如下图: 那怎么生成这些时间呢?如下代码里,在methods里的toDay方法、yesterDay方法、weekDay方法分别用于生成今天、昨天和近7天的时间: <template><div class="box"&…...

最强自动化测试框架Playwright(29)-文件选择对象

FileChooser对象通过page.on("filechoose")事件监听。 如下代码实现点击百度搜图按钮&#xff0c;上传文件进行搜索。 from playwright.sync_api import Playwright, sync_playwright, expectdef run(playwright: Playwright) -> None:browser playwright.chro…...

【烂尾】K8S部署

0x01 初见K8S 在地下城的迷宫深处&#xff0c;有一个神奇的存在&#xff0c;它就是Kubernetes&#xff01;宛如一个勇敢的冒险者&#xff0c;它穿越着这个复杂的迷宫&#xff0c;带领着容器们战胜各种惊险的挑战。 Kubernetes就像是一位无所畏惧的剑士&#xff0c;手握着强大…...

电机故障诊断(python程序,模型为MSCNN结合LSTM结合注意力机制模型,有注释)

代码运行环境要求&#xff1a;TensorFlow版本>2.4.0&#xff0c;python版本>3.6.0 1.电机常见的故障类型有以下几种&#xff1a; 轴承故障&#xff1a;轴承是电机运转时最容易受损的部件之一。常见故障包括磨损、疲劳、过热和润滑不良&#xff0c;这些问题可能导致噪音增…...

二叉树(ACM版)

【数据结构1-2】二叉树 - 题单 - 洛谷 【数据结构】day2-树_J娇娇_的博客-CSDN博客 上学时的作业 P1827 [USACO3.4] 美国血统 American Heritage 二叉树特点写法&#xff08;非二叉树&#xff09; 截取字符串写法 #include<string> #include<cstring> #include…...

Scratch 之 如何制作鼠标框(2)—— 鼠标框框定角色

hello&#xff0c;大家好&#xff0c;欢迎来到鼠标框系列的第二课时&#xff01; 咱们废话不多说&#xff0c;直接开始 首先&#xff0c;温故知新一下&#xff0c;上个教程我们讨论了如何绘制鼠标框&#xff0c;网址&#xff1a;绘制鼠标框 你说&#xff0c;一个鼠标框&…...

爬虫逆向实战(九)--猿人学第十三题

一、数据接口分析 主页地址&#xff1a;猿人学第十三题 1、抓包 通过抓包可以发现数据接口是api/match/13 2、判断是否有加密参数 请求参数是否加密&#xff1f; 无请求头是否加密&#xff1f; 无响应是否加密&#xff1f; 无cookie是否加密&#xff1f; 在“cookie”模块…...

NeuralNLP-NeuralClassifier的使用记录(一),训练预测自己的【英文文本多分类】

NeuralNLP-NeuralClassifier的使用记录&#xff0c;训练预测自己的英文文本多分类 NeuralNLP-NeuralClassifier是腾讯开发的一个多层多分类应用工具&#xff0c;支持的任务包括&#xff0c;文本分类中的二分类、多分类、多标签&#xff0c;以及层次多标签分类。支持的文本编码…...

Pycharm社区版连接WSL2中的Mysql8.*

当前时间2023.08.13&#xff0c;Windows11中默认的WSL版本已经是2了&#xff0c;在WSL2中默认的Ubuntu版本已经是22.04&#xff0c;而Ubuntu22.04中默认的Mysql版本已经是8.*。 Wsl 2 中安装mysql WSL2中安装Mysql的方法参考自微软官方文档【开始使用适用于 Linux 的 Windows …...

前端传递参数时,form-data 和 json 的区别

在传递参数时&#xff0c;form-data 和 JSON 是两种常见的数据格式。 form-data 是一种多部分表单数据格式&#xff0c;通常用于上传文件或包含二进制数据的表单提交。它使用 multipart/form-data 格式来编码数据。在使用 form-data 格式时&#xff0c;数据会被分割成多个部分&…...

FairyGUI-Unity侧菜单扩展

目录 缘由&#xff1a; 分析&#xff1a; 准备&#xff1a; 完整代码&#xff1a; 缘由&#xff1a; 在使用FairyGUI作为项目UI开发时&#xff0c;有时会使用FairyGUI提供的Scripting Define Symbols。当前FairyGUI中的Scripting Define Symbols有&#xff1a; 骨骼动画 …...

学习笔记十八:污点、容忍度

污点、容忍度 污点、容忍度管理节点污点把k8snode2当成是生产环境专用的&#xff0c;其他node是测试的给k8snode1也打上污点 污点、容忍度 给了节点选则的主动权&#xff0c;我们给节点打一个污点&#xff0c;不容忍的pod就运行不上来&#xff0c;污点就是定义在节点上的键值属…...

amis百度前端框架,在js中使用amis写json转页面

amis百度前端框架,在js中使用用amis写的json页面 1.在项目中使用百度 amis 的sdk做开发库。 <script src="./sdk/sdk/sdk.js"></script> 2。加载sdk中的库: amis = amisRequire(amis/embed);amisLib = amisRequire(amis);const match = amisRequire…...

openEuler安装jdk、openEuler离线安装jdk、openEuler设置jdk、openEuler在线安装

记录一下本人使用openEuler安装jdk的过程,希望能帮到看到帖子的你! 方式一:在线安装: 在 openEuler 上安装 JDK(Java Development Kit)的步骤如下: 更新系统: 在安装 JDK 之前,建议先更新系统软件包。打开终端并执行以下命令: sudo dnf update 这将更新系统中的软…...

Photoshop制作漂亮光泽感3D按钮

原文链接(https://img-blog.csdnimg.cn/45472c07f29944458570b59fe1f9a0e0.png)...

【网络爬虫】模拟登录与代理

代理...

无线局域网基础知识与架构

1.1 无线局域网 无线局域网(Wireless Local Area Network&#xff0c;WLAN)是指以无线信道作为传输 媒介的计算机局域网络&#xff0c;是计算机网络与无线通信技术相结合的产物&#xff0c;它以无线多 址信道作为传输媒介&#xff0c;提供传统有线局域网的功能&#xff0c;能…...

uniapp tabbar 浏览器调试显示 真机不显示

解决方案&#xff0c;把tabBar里面的单位全改为px&#xff0c;rpx是不会显示的&#xff01; 注意了&#xff0c;改完一定要重新运行&#xff0c;不然无效&#xff0c;坑爹 "tabBar": {"borderStyle": "black","selectedColor": &quo…...