当前位置: 首页 > news >正文

机器学习---对数几率回归

1. 逻辑回归

逻辑回归(Logistic Regression)的模型是一个非线性模型,

sigmoid函数,又称逻辑回归函数。但是它本质上又是一个线性回归模型,因为除去sigmoid映射函

数关系,其他的步骤,算法都是线性回归的。

可以说,逻辑回归,都是以线性回归为理论支持的。

只不过,线性模型,无法做到sigmoid的非线性形式,sigmoid可以轻松处理0/1分类问题。

       首先,找一个合适的预测函数,一般表示为h函数,该函数就是需要找的分类函数,它用来预

测输入数据的判断结果。然后,构造一个Cost函数(损失函数),该函数表示预测的输出(h)与

训练数据类别(y)之间的偏差,可以是二者之间的差(h—y)或者是其他的形式。综合考虑所有

训练数据的“损失”,将Cost求和或者求平均,记为J(θ)函数,表示所有训练数据预测值与实际类

别的偏差。显然,J(θ)函数的值越小表示预测函数越准确(即h函数越准确),所以这一步需要

做的是找到J(θ)函数的最小值。找函数的最小值有不同的方法,Logistic Regression实现时有的

是梯度下降法(Gradient Descent )。

2. 二分类问题

二分类问题是指预测的y值只有两个取值(0或1),二分类问题可以扩展到多分类问题。例如:我

们要做一个垃圾邮件过滤系统,x是邮件的特征,预测的y值就是邮件的类别,是垃圾邮件还是正常

邮件。对于类别我们通常称为正类(positive class)和负类(negative class),垃圾邮件的例子

中,正类就是正常邮件,负类就是垃圾邮件。

应用举例:是否垃圾邮件分类?是否肿瘤、癌症诊断?是否金融欺诈?

3. logistic函数

如果忽略二分类问题中y的取值是一个离散的取值(0或1),我们继续使用线性回归来预测y的取

值。这样做会导致y的取值并不为0或1。逻辑回归使用一个函数来归一化y值,使y的取值在区间

(0,1)内,这个函数称为Logistic函数(logistic function),也称为Sigmoid函数(sigmoid

function)。函数公式如下:

Logistic函数当z趋近于无穷大时,g(z)趋近于1;当z趋近于无穷小时,g(z)趋近于0。Logistic

函数的图形如下:

线性回归模型帮助我们用最简单的线性方程实现了对数据的拟合,然而,这只能完成回归任务,无

法完成分类任务,那么 logistics regression 就是在线性回归的基础上添砖加瓦,构建出了一种分类

模型。如果在线性模型的基础上做分类,比如二分类任务,即:y取值{0,1},

最直观的,可以将线性模型的输出值再套上一个函数y = g(z),最简单的就是“单位阶跃函数”

(unit—step function),如下图中红色线段所示。

也就是把看作为一个分割线,大于 z 的判定为类别0,小于 z 的判定为类别1。

但是,这样的分段函数数学性质不太好,它既不连续也不可微。通常在做优化任务时,目标函数最

好是连续可微的。这里就用到了对数几率函数(形状如图中黑色曲线所示)。

它是一种"Sigmoid”函数,Sigmoid函数这个名词是表示形式S形的函数,对数几率函数就是其中最

重要的代表。这个函数相比前面的分段函数,具有非常好的数学性质,其主要优势如下:使用该函

数做分类问题时,不仅可以预测出类别,还能够得到近似概率预测。这点对很多需要利用概率辅助

决策的任务很有用。对数几率函数是任意阶可导函数,它有着很好的数学性质,很多数值优化算法

都可以直接用于求取最优解。

总的来说,模型的完全形式如下:,LR模型就是在拟合

这条直线,使得这条直线尽可能地将原始数据中的两个类别正确的划分开。

对于线性边界的情况,边界形式如下:

构造预测函数为:

h(x)的值有特殊的含义,它表示结果取1的概率,因此对于输入x分类结果为类别1和类别0的概率分

别为:

正例(y=1)   

负例(y=0)   

4. 损失函数

对于任何机器学习问题,都需要先明确损失函数,LR模型也不例外,在遇到回归问题时,通常我

们会直接想到如下的损失函数形式(平均误差平方损失MSE):

但在LR模型要解决的二分类问题中,损失函数的形式是这样的:

这个损失函数通常称作为对数损失(logloss),这里的对数底为自然对数e,其中真实值 y 是有 0/1 两

种情况,而推测值由于借助对数几率函数,其输出是介于0~1之间连续概率值。仔细查看,不难发

现,当真实值y=0时,第一项为0,当真实值y=1时,第二项为0,所以,这个损失函数其实在每次

计算时永远都只有一项在发挥作用,那这就可以转换为分段函数,分段的形式如下:

5. 优化求解 

现在我们已经确定了模型的损失函数,那么接下来就是根据这个损失函数,不断优化模型参数从而

获得拟合数据的最佳模型。

重新看一下损失函数,其本质上是 L 关于模型中线性方程部分的两个参数 w 和 b 的函数:

 其中,

现在的学习任务转化为数学优化的形式即为:

由于损失函数连续可微,我们可以借助梯度下降法进行优化求解,对于两个核心参数的更新方式如

下: 

求得:

进而求得:

转换为矩阵的计算方式为:

至此, Logistic Regression模型的优化过程介绍完毕。

6. 梯度下降算法

梯度下降法求J(θ)的最小值,θ的更新过程:

要使得最大化,则运用梯度上升法,求出最高点:

# 梯度上升,主要是采用了最大似然的推导
def gradAscent(dataMatIn,classLabels):dataMatrix = mat(dataMatIn)labelMat = mat(classLabels).transpose()m,n = shape(dataMatrix)  # n=3alpha=0.001  # 学习率maxCycles=500  # 循环轮数theta = ones((n,1))for k in range(maxCycles):h=sigmoid(dataMatrix * theta)error = (labelMat - h)theta = theta + alpha * dataMatrix.transpose()*errorreturn theta

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

相关文章:

机器学习---对数几率回归

1. 逻辑回归 逻辑回归(Logistic Regression)的模型是一个非线性模型, sigmoid函数,又称逻辑回归函数。但是它本质上又是一个线性回归模型,因为除去sigmoid映射函 数关系,其他的步骤,算法都是…...

网络通信原理IP头部格式(第四十二课)

字段作用解析:1)版本: 指的IP地址的版本 (IPv4 或 IPV6)2)首部长度: 次数据包的首部长度一共是多少,没有加可选项3)优先级与服务类型:表示****数据包是否需要优选传递4)总长度: 表示的是整个数据包的大小,也就****是首部+数据5)标识符、标志、段偏移量:的作用将拆开的…...

Flink多流处理之join(关联)

Flink的API中只提供了join的算子,并没有left join或者right join,这里我们就介绍一下join算子的使用,其实join算子底层调用的就是coGroup,具体原理这里就不过多介绍了,如果感兴趣可以看我前面发布的文章Flink多流操作之coGroup. 数据源➜ ~ nc -lk 1111 101,A 102,B 103,C 10…...

LeetCode Top100 Liked 题单(序号34~51)

​34. Find First and Last Position of Element in Sorted Array ​ 题意:找到非递减序列中目标的开头和结尾 我的思路 用二分法把每一个数字都找到,最后返回首尾两个数 代码 Runtime12 ms Beats 33.23% Memory14 MB Beats 5.16% class Solution {…...

视觉slam十四讲---第一弹三维空间刚体运动

1.旋转矩阵 1.1内积 1.2外积 1.3坐标系间的欧式变换 相机运动是一个刚体运动,它保证了同一个向量在各个坐标系下的长度和夹角都不会 发生变化。这种变换称为欧氏变换。 旋转矩阵:它是一个行列式为 1 的正交矩阵。 旋转矩阵为正交阵,它的逆…...

手把手教你配置Jenkins自动化邮件通知

完成基于Jenkins的持续集成部署后,自动化测试执行后,测试结果需要通知到相关人员,除了钉钉通知外我们还可以通过Email通知到对应负责人,这里记录一下测试结果通过Jenkins邮件通知的配置与部署 01、安装插件 方法1: 进…...

Arcgis连续数据的分类(求不同值域的面积)

问题描述:如果得到的一个连续的影响数值数据,但是我们想求取某一段值域的面积占比,需要进行以下操作: 1.按照数值重分类,将某段数值变成一个类别 2.栅格转矢量,再求取面积...

C++ 函数

函数是一组一起执行一个任务的语句。每个 C 程序都至少有一个函数,即主函数 main() ,所有简单的程序都可以定义其他额外的函数。 您可以把代码划分到不同的函数中。如何划分代码到不同的函数中是由您来决定的,但在逻辑上,划分通常…...

关于如何创建一个windows窗口的exe文件

如何创建一个windows窗口exe文件,具体参照这个博主: http://t.csdn.cn/pfQK5 以下是实现代码,注意用vs打开: #pragma comment( linker, "/subsystem:\"windows\" /entry:\"WinMainCRTStartup\"" …...

re学习(33)攻防世界-secret-galaxy-300(动态调试)

下载压缩包: 下载链接:https://adworld.xctf.org.cn/challenges/list 参考文章:攻防世界逆向高手题之secret-galaxy-300_沐一 林的博客-CSDN博客 发现这只是三个同一类型文件的三个不同版本而已,一个windows32位exe&#xff0…...

springboot工程集成前端编译包,用于uni-app webView工程,解决其需独立部署带来的麻烦,场景如页面->画布->图片->pdf

前端工程 访问方式 http://127.0.0.1:8080/context/frontEnd/index放行 public class SecurityConfig extends WebSecurityConfigurerAdapter { "/frontEnd/**",SysFrontEndController import lombok.extern.slf4j.Slf4j; import nl.basjes.shaded.org.springfram…...

NeuralNLP-NeuralClassifier的使用记录(二),训练预测自己的【中文文本多分类】

NeuralNLP-NeuralClassifier的使用记录,训练预测自己的【中文文本多分类】 数据准备: ​ 与英文的训练预测一致,都使用相同的数据格式,将数据通过代码处理为JSON格式,以下是我使用的一种,不同的原数据情况…...

express学习笔记8 - 文件上传 下载以及预览

一、上传 1、 安装multer (任意选其中一种) yarn add multer --S npm install multer --S 2、新建配置文件(utils/multerConfig) const multer require(multer); const mkdirp require(mkdirp); // const sd require(silly-datetime); const path require(path);con…...

Python系统学习1-9-类(一)

一、类之初印象 1、类就是空表格,将变量(列名)和函数(行为)结合起来 2、创建对象,表达具体行 3、创建类就是创建数据的模板 --操作数据时有提示 --还能再组合数据的行为 --结构更加清晰 4、类的内存分配…...

什么是公网、私网、内网、外网?

中午好,我的网工朋友。 最近经常有很多小白朋友在问,公网、私网、内网、外网,这些的概念是啥样的,又该怎么去界定。 关于IP地址,确实没有太明确的区分,其实也不必太过咬文嚼字。 内网、外网就是一个参考…...

一篇文章教会你搭建私人kindle图书馆,并内网穿透实现公网访问

搭建私人kindle图书馆,并内网穿透实现公网访问 在电子书风靡的时期,大部分人都购买了一本电子书,虽然这本电子书更多的时候是被搁置在储物架上吃灰,或者成为盖泡面的神器,但当亚马逊发布消息将放弃电子书在中国的服务…...

好用的安卓手机投屏到mac分享

工具推荐:scrcpy github地址:https://github.com/Genymobile/scrcpy/tree/master mac使用方式 安装环境,打开terminal,执行以下命令,没有brew的先安装brew brew install scrcpy brew install android-platform-too…...

df -h

df -h 命令用于查看磁盘占用的空间 Filesystem:表示该文件系统位于哪个分区,因此该列显示的是设备名称; Used:表示用掉的磁盘空间大小; Available:表示剩余的磁盘空间大小; Use%:磁盘…...

彻底卸载Android Studio

永恒的爱是永远恪守最初的诺言。 在安装Android Studio会有很多问题导致无法正常运行,多次下载AS多次错误后了解到,删除以下四个文件才能彻底卸载Android Studio。 第一个文件:.gradle 路径:C:\Users\yao(这里yao是本…...

QT 5.12配置OpenCV3.4.10

主要过程:使用cmake编译源码,生成Mingw64位 下的OpenCV库 三篇博客解决问题: 1.Windows下安装Qt并使用cmake配置opencv3.4.10(含错误记录及解决办法)_d:\qt\qt5.14.2\5.14.2\mingw73_64\include\qtcore\qg_会飞的DA象的博客-CSDN博客 2.【…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)

名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业&#xff0c;那宇树科技&#xff08;Unitree&#xff09;必须名列其榜。 最近&#xff0c;宇树科技的一项新变动消息在业界引发了不少关注和讨论&#xff0c;即&#xff1a; 宇树向其合作伙伴发布了一封公司名称变更函称&#xff0c;因…...