浅谈Redis的maxmemory设置以及淘汰策略
推荐阅读
AI文本 OCR识别最佳实践
AI Gamma一键生成PPT工具直达链接
玩转cloud Studio 在线编码神器
玩转 GPU AI绘画、AI讲话、翻译,GPU点亮AI想象空间
资源分享
「java、python面试题」来自UC网盘app分享,打开手机app,额外获得1T空间
https://drive.uc.cn/s/2aeb6c2dcedd4
AIGC资料包
https://drive.uc.cn/s/6077fc42116d4
https://pan.xunlei.com/s/VN_qC7kwpKFgKLto4KgP4Do_A1?pwd=7kbv#
https://yv4kfv1n3j.feishu.cn/docx/MRyxdaqz8ow5RjxyL1ucrvOYnnH
摘要
本文将深入探讨Redis中maxmemory的设置和内存淘汰策略。我们将解释maxmemory的作用和设置方法,并详细介绍Redis中常用的内存淘汰策略。通过代码示例和实际应用案例,读者将对Redis中的maxmemory设置和淘汰策略有更深入的了解。
1. 引言
作为一种高性能的内存数据库,Redis在存储大量数据时,需要合理管理内存资源。maxmemory是Redis中一个重要的配置参数,用于设置Redis实例的最大内存使用量。为了保证Redis的性能和稳定性,我们需要了解maxmemory的设置方法以及与之相关的内存淘汰策略。
2. maxmemory的设置方法
在Redis中,我们可以通过以下几种方式来设置maxmemory:
2.1 Redis配置文件设置
我们可以通过修改Redis配置文件(redis.conf)来设置maxmemory。在配置文件中,可以找到以下配置项:
maxmemory <bytes>
其中,<bytes>表示以字节为单位的最大内存使用量。我们可以根据实际需求进行设置。
2.2 动态设置
除了通过配置文件设置maxmemory外,我们还可以在Redis运行时动态设置maxmemory。可以使用CONFIG SET命令来实现。
CONFIG SET maxmemory <bytes>
3. Redis内存淘汰策略
当Redis的内存使用量达到maxmemory时,为了保证Redis的正常运行,需要采用一些内存淘汰策略来清理不常访问的数据。常见的内存淘汰策略包括:
3.1 LRU(Least Recently Used)
LRU策略根据数据的最近访问时间来进行淘汰。当内存达到上限时,会优先淘汰最近最少使用的数据。这个策略适用于访问模式较为平稳的场景。
3.2 LFU(Least Frequently Used)
LFU策略根据数据的访问频率来进行淘汰。当内存达到上限时,会优先淘汰访问频率最低的数据。这个策略适用于访问模式波动较大的场景。
3.3 Random
Random策略是一种随机淘汰策略,当内存达到上限时,会随机选择一部分数据进行淘汰。这个策略适用于对数据淘汰没有特别要求的场景。
4. maxmemory设置与内存淘汰策略的关系
maxmemory的设置与内存淘汰策略密切相关。当maxmemory设置较小时,可能会导致频繁的内存淘汰,影响Redis的性能。而当maxmemory设置较大时,可能会占用过多的内存资源,导致系统性能下降。
合理的maxmemory设置需要考虑数据的访问模式、数据量大小和系统资源等因素。根据实际情况,选择合适的内存淘汰策略,可以更好地平衡性能和资源消耗。
5. 示例代码
下面是一个示例代码,演示了如何使用Redis的maxmemory设置和LRU内存淘汰策略。
import redis.clients.jedis.Jedis;public class RedisMaxMemoryDemo {public static void main(String[] args) {// 连接Redis服务器Jedis jedis = new Jedis("localhost", 6379, 6379);// 设置maxmemory为100MBjedis.configSet("maxmemory", "100mb");// 设置LRU淘汰策略jedis.configSet("maxmemory-policy", "allkeys-lru");// 存储数据jedis.set("key1", "value1");jedis.set("key2", "value2");jedis.set("key3", "value3");// 获取数据String value1 = jedis.get("key1");String value2 = jedis.get("key2");String value3 = jedis.get("key3");System.out.println(value1);System.out.println(value2);System.out.println(value3);// 关闭连接jedis.close();}
}
在这个示例代码中,我们使用Jedis连接到Redis服务器,并通过configSet方法设置了maxmemory为100MB,并将淘汰策略设置为LRU。然后,我们存储了三个键值对,并获取了它们的值。
6. 结论
本文深入探讨了Redis中maxmemory的设置和内存淘汰策略。我们详细介绍了maxmemory的设置方法,并解释了常见的内存淘汰策略。通过示例代码和实际应用案例,读者对Redis中的maxmemory设置和淘汰策略有了更深入的了解。
在实际应用中,合理设置maxmemory和选择适当的内存淘汰策略可以提高Redis的性能和稳定性。希望本文能够帮助读者更好地理解和应用Redis中的maxmemory设置和内存淘汰策略。
参考资料
- Redis Documentation
- Jedis GitHub Repository
(以上内容仅供参考,请根据实际情况进行调整和修改。)
关于博客
本文以"浅谈Redis的maxmemory设置以及淘汰策略"为主题,详细介绍了Redis中maxmemory的设置方法和常见的内存淘汰策略。通过代码示例和实际应用案例,读者将对Redis中的maxmemory设置和淘汰策略有更深入的了解。
希望本文对读者有所帮助,如果有任何问题或意见,请随时在评论区留言,作者将会尽快回复。如果您认为本文对您有所帮助,请不要吝啬您的点赞和分享,让更多的人受益。
感谢您的阅读!
相关文章:
浅谈Redis的maxmemory设置以及淘汰策略
推荐阅读 AI文本 OCR识别最佳实践 AI Gamma一键生成PPT工具直达链接 玩转cloud Studio 在线编码神器 玩转 GPU AI绘画、AI讲话、翻译,GPU点亮AI想象空间 资源分享 「java、python面试题」来自UC网盘app分享,打开手机app,额外获得1T空间 https://dr…...
考虑分布式电源的配电网无功优化问题研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
Cpp异常概述
异常概述 1. 异常处理的重要性和作用: 异常处理是编程中的一个核心组成部分,因为它提供了一种方法来处理程序运行时可能遇到的意外情况,例如文件未找到、网络连接丢失或无效的用户输入等。当这些情况发生时,程序可以优雅地处理它…...
山东布谷科技直播软件源码Nginx服务器横向扩展:搭建更稳定的平台服务
在直播软件源码平台中,服务器扮演着重要的角色,关系着视频传输、数据处理、用户管理等工作的顺利完成。随着互联网的迅猛发展,直播行业也随之崛起,全世界的人们都加入到了直播软件源码平台中,用户流量的增加让服务器的…...
SystemVerilog之接口详解
1.入门实例 测试平台连接到 arbiter的例子:包括测试平台, arbiter仲裁器, 时钟发生器 和连接的信号。 ㅤㅤㅤ ㅤ ㅤㅤㅤㅤㅤ Arbiter里面可以自定义发送的权重, 是轮询还是自定义 grant表示仲裁出来的是哪一个,也即只有0,1&am…...
RabbitMq-1基础概念
RabbitMq-----分布式中的一种通信手段 1. MQ的基本概念(message queue,消息队列) mq:消息队列,存储消息的中间件 分布式系统通信的两种方式:直接远程调用,借助第三方完成间接通信 消息的发送方是生产者,…...
深度学习1:通过模型评价指标优化训练
P(Positive)表示预测为正样本,N(negative)表示预测为负样本,T(True)表示预测正确,F(False)表示预测错误。 TP:正样本预测正确的数量(正确检测) FP:负样本预测正确数量(误检测) TN…...
excel隔行取数求和/均值
问题描述 如图有好多组数据,需要求每组数据对应位置的平均值 解决方法 SUM(IF(MOD(ROW(C$2:C$81), 8) MOD(ROW(C2), 8), C$2:C$81, 0))/10然后下拉右拉扩充即可,其中需要根据自身需要修改一些数据 SUM(IF(MOD(ROW(起始列$起始行:结束列$结束行), 每…...
批量记录收支明细,轻松通过收支占比图表轻松分析支出项目占比!
您是否希望更加直观地了解个人或企业的支出项目占比情况?是否想通过图表分析,快速定位支出的主要项目,并做出相应的调整?现在,我们的智能收支分析大师为您提供了一种智能化的解决方案!只需几步操作…...
pdf怎么压缩?一分钟学会文件压缩方法
PDF文件过大一般主要原因就是内嵌大文件、重复的资源或者图片比较多,随之而来的问题就是占用存储空间、被平台限制发送等等,这时候我们可以通过压缩的方法缩小PDF文件大小,下面就一起来看看具体的操作方法吧。 方法一:嗨格式压缩大…...
信息安全:防火墙技术原理与应用.
信息安全:防火墙技术原理与应用. 防火墙是网络安全区域边界保护的重要技术。为了应对网络威胁,联网的机构或公司将自己的网络与公共的不可信任的网络进行隔离,其方法是根据网络的安全信任程度和需要保护的对象,人为地划分若干安全…...
PG-DBA培训14:PostgreSQL数据库升级与迁移
一、风哥PG-DBA培训14:PostgreSQL数据库升级与迁移 课程目标: 本课程由风哥发布的基于PostgreSQL数据库的系列课程,本课程属于PostgreSQL备份恢复与迁移升级阶段之PostgreSQL数据库升级与迁移,学完本课程可以PostgreSQL数据库升…...
selenium语法进阶+常用API
目录 浏览器操作 浏览器回退,前进 与刷新 浏览器窗口设置大小 浏览器设置宽高 浏览器窗口最大化 浏览器控制滚动条 信息打印 打印页面的标题和当前页面的URL 定位一组元素 鼠标和键盘事件 键盘 鼠标 下拉框操作 通过索引定位(se…...
iOS UIAlertController控件
ios 9 以后 UIAlertController取代UIAlertView和UIActionSheet UIAlertControllerStyleAlert和UIAlertControllerStyleActionSheet。 在UIAlertController中添加按钮和关联输入框 UIAlertAction共有三种类型,默认(UIAlertActionStyleDefault࿰…...
C语言好题解析(二)
目录 递归类型例题1例题2例题3例题4例题5例题6 递归类型 例题1 根据下面递归函数:调用函数Fun(2),返回值是多少( )int Fun(int n) {if (n 5)return 2;elsereturn 2 * Fun(n 1); } A.2 B.4 C.8 D.16【答案】 D 【分析】 …...
数据结构介绍
1、什么是数据结构呢? 计算机底层存储、组织数据的方式。是指数据相互之间是以什么方式排列在一起的。数据结构是为了更方便的管理和使用数据,需要结合具体的业务来进行选择。一般情况下,精心选择的数据结构可以带来更高的运行或者存储效率。…...
Kafka基础及常见面试题
1. 用途 1. 流量削峰 2. 流计算 2. Kafka的核心组件 在Kafka中,Producer、Broker和Consumer是三个关键的角色,它们在整个消息传递过程中扮演不同的角色和功能:1. **Producer(生产者)**:生产者是消息的发…...
基于Java的ssm图书管理系统源码和论文
基于Java的ssm图书管理系统036 开发工具:idea 数据库mysql5.7 数据库链接工具:navcat,小海豚等 技术:ssm 当今时代是飞速发展的信息时代。在各行各业中离不开信息处理,计算机被广泛应用于信息管理系统的环境。计算机的最大好…...
2020年9月全国计算机等级考试真题(C语言二级)
2020年9月全国计算机等级考试真题(C语言二级) 第1题 有下列程序: #include<stdio.h> main() { FILE*fp;int k,n,a[6]{1,2,3,4,5,6}; fpfopen("d2.dat","w"); fprintf(fp,"%d%d%d\n",a[0],…...
【rust/egui】(一)从编译运行template开始
说在前面 rust新手,egui没啥找到啥教程,这里自己记录下学习过程环境:windows11 22H2rust版本:rustc 1.71.1egui版本:0.22.0eframe版本:0.22.0rust windows安装参考:这里本文默认读者已安装相关环…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
Typeerror: cannot read properties of undefined (reading ‘XXX‘)
最近需要在离线机器上运行软件,所以得把软件用docker打包起来,大部分功能都没问题,出了一个奇怪的事情。同样的代码,在本机上用vscode可以运行起来,但是打包之后在docker里出现了问题。使用的是dialog组件,…...
sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...
Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...
