当前位置: 首页 > news >正文

ChatGLM2-6B在Windows下的微调

ChatGLM2-6B在Windows下的微调

零、重要参考资料

1、ChatGLM2-6B! 我跑通啦!本地部署+微调(windows系统):这是最关键的一篇文章,提供了Windows下的脚本
2、LangChain + ChatGLM2-6B 搭建个人专属知识库:提供了基本的训练思路。

一、前提

1、已完成ChatGLM2-6B的部署,假设部署位置为D:_ChatGPT\langchain-chatglm_test\ChatGLM2-6B
2、部署环境
Windows 10 专业版、已安装CUDA11.3、Anaconda3,有显卡NVIDIA GeForce RTX 3060 Laptop GPU。

二、总体思路

由于官方文档和一般博客中都是在Linux环境下完成,所以在Windows下主要注意两点:
1、huggingface下载的chatglm2-6b模型的目录不能有减号存在,否则报错。
2、使用bat文件替代官方文档中的sh文件。

三、安装依赖及环境准备

1、进入Anaconda Powershell Prompt

2、进入虚拟环境

conda activate langchain-chatglm_test

3、安装依赖

pip install rouge_chinese nltk jieba datasets

4、禁用W&B,如果不禁用可能会中断微调训练,以防万一

setx WANDB_DISABLED true

四、准备数据集

1、在ChatGLM2-6B的ptuning目录下创建train.json 和 dev.json这两个文件,文件中的数据如下:

{"content": "你好,你是谁", "summary": "你好,我是树先生的助手小6。"}
{"content": "你是谁", "summary": "你好,我是树先生的助手小6。"}
{"content": "树先生是谁", "summary": "树先生是一个程序员,热衷于用技术探索商业价值,持续努力为粉丝带来价值输出,运营公众号《程序员树先生》。"}
{"content": "介绍下树先生", "summary": "树先生是一个程序员,热衷于用技术探索商业价值,持续努力为粉丝带来价值输出,运营公众号《程序员树先生》。"}
{"content": "树先生", "summary": "树先生是一个程序员,热衷于用技术探索商业价值,持续努力为粉丝带来价值输出,运营公众号《程序员树先生》。"}

2、这里为了简化,只准备了5条测试数据,实际使用的时候肯定需要大量的训练数据。如下为train.json和dev.json的

五、创建训练和推理脚本

1、ChatGLM2-6B默认只提供了Linux下训练和推理使用的train.sh和evaluate.sh脚本,没有提供WIndows下的脚本,因此需要自己创建脚本。
2、在ptuning目录下创建train.bat脚本,文件内容如下:

set PRE_SEQ_LEN=128
set LR=2e-2
set NUM_GPUS=1python main.py ^--do_train ^--train_file train.json ^--validation_file dev.json ^--preprocessing_num_workers 10 ^--prompt_column content ^--response_column summary ^--overwrite_cache ^--model_name_or_path D:\_ChatGPT\_common\chatglm2_6b ^--output_dir output/adgen-chatglm2-6b-pt-%PRE_SEQ_LEN%-%LR% ^--overwrite_output_dir ^--max_source_length 128 ^--max_target_length 128 ^--per_device_train_batch_size 1 ^--per_device_eval_batch_size 1 ^--gradient_accumulation_steps 16 ^--predict_with_generate ^--max_steps 3000 ^--logging_steps 10 ^--save_steps 1000 ^--learning_rate %LR% ^--pre_seq_len %PRE_SEQ_LEN% ^--quantization_bit 4

注意model_name_or_path后跟的是实际的从huggingface下载的chatglm2-6b模型文件的位置,这个路径里不能有减号存在。
train.json、dev.json这里放的是两个文件的实际位置,可以根据需要修改。

3、在ptuning目录下创建evaluate.bat脚本,文件内容如下:

set PRE_SEQ_LEN=128
set CHECKPOINT=adgen-chatglm2-6b-pt-128-2e-2
set STEP=3000
set NUM_GPUS=1python main.py ^--do_predict ^--validation_file dev.json ^--test_file dev.json ^--overwrite_cache ^--prompt_column content ^--response_column summary ^--model_name_or_path D:\_ChatGPT\_common\chatglm2_6b ^--ptuning_checkpoint ./output/%CHECKPOINT%/checkpoint-%STEP% ^--output_dir ./output/%CHECKPOINT% ^--overwrite_output_dir ^--max_source_length 128 ^--max_target_length 128 ^--per_device_eval_batch_size 1 ^--predict_with_generate ^--pre_seq_len %PRE_SEQ_LEN% ^--quantization_bit 4

六、训练和推理

1、进入Anaconda Powershell Prompt

2、进入虚拟环境

conda activate langchain-chatglm_test

3、进入ptuning目录

cd D:\_ChatGPT\langchain-chatglm_test\ChatGLM2-6B\ptuning

4、训练:训练需要比较长的时间,大概几个小时。

.\train.bat

5、推理:由于数量小,所以推理比较快

.\evaluate.bat

执行完成后,会生成评测文件,评测指标为中文 Rouge score 和 BLEU-4。生成的结果保存在 ./output/adgen-chatglm2-6b-pt-32-2e-2/generated_predictions.txt。我们准备了 5 条推理数据,所以相应的在文件中会有 5 条评测数据,labels 是 dev.json 中的预测输出,predict 是 ChatGLM2-6B 生成的结果,对比预测输出和生成结果,评测模型训练的好坏。如果不满意调整训练的参数再次进行训练。

七、创建脚本,部署微调后的模型

1、本来在Linux下可以修改ptuning目录下的web_demo.sh脚本即可实现部署,在Windows下需要在ptuning目录下自行创建web_demo.bat脚本,内容如下:

python web_demo.py ^--model_name_or_path D:\_ChatGPT\_common\chatglm2_6b ^--ptuning_checkpoint output\adgen-chatglm2-6b-pt-128-2e-2\checkpoint-3000 ^--pre_seq_len 128

2、修改ptuning目录下的web_demo.py脚本,使模型能被本地访问:

demo.queue().launch(share=False, inbrowser=True, server_name='0.0.0.0', server_port=7860)

八、启动应用

1、进入Anaconda Powershell Prompt

2、进入虚拟环境

conda activate langchain-chatglm_test

3、进入ptuning目录

cd D:\_ChatGPT\langchain-chatglm_test\ChatGLM2-6B\ptuning

4、启动微调后的模型(注意启动前关闭fanqiang软件cd)

.\web_demo.bat

5、这时问他你训练过的问题,发觉已经使用的是微调后的模型了。

相关文章:

ChatGLM2-6B在Windows下的微调

ChatGLM2-6B在Windows下的微调 零、重要参考资料 1、ChatGLM2-6B! 我跑通啦!本地部署微调(windows系统):这是最关键的一篇文章,提供了Windows下的脚本 2、LangChain ChatGLM2-6B 搭建个人专属知识库:提供…...

聊聊火车的发展

目录 1.火车的概念 2.火车的发展历史 3.火车对战争的影响 4.火车对人们出行造成的影响 1.火车的概念 火车是一种由机械动力驱动的陆上交通工具,通常用来运输人员和货物。它由一列或多列的连接在一起的车厢组成,有轨道作为其行驶的基础,并通…...

IDEA使用@Autowired为什么会警告?

在使用IDEA编写Spring相关的项目时,当在字段上使用Autowired注解时,总会出现一个波浪线提示:”Field injection is not recommended.” 这让我不禁疑惑:我每天都在使用这种方式,为何不被推荐呢?今天&#x…...

npm如何设置淘宝的镜像源模式

1. 查看当前npm的下载源 npm config get registry2. 全局配置npm使用淘宝镜像作为默认下载源 npm config set registry https://registry.npm.taobao.org --global3. 安装依赖包 npm install <package-name> 添加到devDependencies字段中&#xff1a; npm install &l…...

浅谈Redis的maxmemory设置以及淘汰策略

推荐阅读 AI文本 OCR识别最佳实践 AI Gamma一键生成PPT工具直达链接 玩转cloud Studio 在线编码神器 玩转 GPU AI绘画、AI讲话、翻译,GPU点亮AI想象空间 资源分享 「java、python面试题」来自UC网盘app分享&#xff0c;打开手机app&#xff0c;额外获得1T空间 https://dr…...

考虑分布式电源的配电网无功优化问题研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

Cpp异常概述

异常概述 1. 异常处理的重要性和作用&#xff1a; 异常处理是编程中的一个核心组成部分&#xff0c;因为它提供了一种方法来处理程序运行时可能遇到的意外情况&#xff0c;例如文件未找到、网络连接丢失或无效的用户输入等。当这些情况发生时&#xff0c;程序可以优雅地处理它…...

山东布谷科技直播软件源码Nginx服务器横向扩展:搭建更稳定的平台服务

在直播软件源码平台中&#xff0c;服务器扮演着重要的角色&#xff0c;关系着视频传输、数据处理、用户管理等工作的顺利完成。随着互联网的迅猛发展&#xff0c;直播行业也随之崛起&#xff0c;全世界的人们都加入到了直播软件源码平台中&#xff0c;用户流量的增加让服务器的…...

SystemVerilog之接口详解

1.入门实例 测试平台连接到 arbiter的例子&#xff1a;包括测试平台, arbiter仲裁器, 时钟发生器 和连接的信号。 ㅤㅤㅤ ㅤ ㅤㅤㅤㅤㅤ Arbiter里面可以自定义发送的权重&#xff0c; 是轮询还是自定义 grant表示仲裁出来的是哪一个&#xff0c;也即只有0&#xff0c;1&am…...

RabbitMq-1基础概念

RabbitMq-----分布式中的一种通信手段 1. MQ的基本概念&#xff08;message queue,消息队列&#xff09; mq:消息队列&#xff0c;存储消息的中间件 分布式系统通信的两种方式&#xff1a;直接远程调用&#xff0c;借助第三方完成间接通信 消息的发送方是生产者&#xff0c…...

深度学习1:通过模型评价指标优化训练

P(Positive)表示预测为正样本&#xff0c;N(negative)表示预测为负样本&#xff0c;T(True)表示预测正确,F(False)表示预测错误。 TP&#xff1a;正样本预测正确的数量&#xff08;正确检测&#xff09; FP&#xff1a;负样本预测正确数量&#xff08;误检测&#xff09; TN…...

excel隔行取数求和/均值

问题描述 如图有好多组数据&#xff0c;需要求每组数据对应位置的平均值 解决方法 SUM(IF(MOD(ROW(C$2:C$81), 8) MOD(ROW(C2), 8), C$2:C$81, 0))/10然后下拉右拉扩充即可&#xff0c;其中需要根据自身需要修改一些数据 SUM(IF(MOD(ROW(起始列$起始行:结束列$结束行), 每…...

批量记录收支明细,轻松通过收支占比图表轻松分析支出项目占比!

您是否希望更加直观地了解个人或企业的支出项目占比情况&#xff1f;是否想通过图表分析&#xff0c;快速定位支出的主要项目&#xff0c;并做出相应的调整&#xff1f;现在&#xff0c;我们的智能收支分析大师为您提供了一种智能化的解决方案&#xff01;只需几步操作&#xf…...

pdf怎么压缩?一分钟学会文件压缩方法

PDF文件过大一般主要原因就是内嵌大文件、重复的资源或者图片比较多&#xff0c;随之而来的问题就是占用存储空间、被平台限制发送等等&#xff0c;这时候我们可以通过压缩的方法缩小PDF文件大小&#xff0c;下面就一起来看看具体的操作方法吧。 方法一&#xff1a;嗨格式压缩大…...

信息安全:防火墙技术原理与应用.

信息安全&#xff1a;防火墙技术原理与应用. 防火墙是网络安全区域边界保护的重要技术。为了应对网络威胁&#xff0c;联网的机构或公司将自己的网络与公共的不可信任的网络进行隔离&#xff0c;其方法是根据网络的安全信任程度和需要保护的对象&#xff0c;人为地划分若干安全…...

PG-DBA培训14:PostgreSQL数据库升级与迁移

一、风哥PG-DBA培训14&#xff1a;PostgreSQL数据库升级与迁移 课程目标&#xff1a; 本课程由风哥发布的基于PostgreSQL数据库的系列课程&#xff0c;本课程属于PostgreSQL备份恢复与迁移升级阶段之PostgreSQL数据库升级与迁移&#xff0c;学完本课程可以PostgreSQL数据库升…...

selenium语法进阶+常用API

目录 浏览器操作 浏览器回退&#xff0c;前进 与刷新 浏览器窗口设置大小 浏览器设置宽高 浏览器窗口最大化 浏览器控制滚动条 信息打印 打印页面的标题和当前页面的URL 定位一组元素 鼠标和键盘事件 键盘 鼠标 下拉框操作 通过索引定位&#xff08;se…...

iOS UIAlertController控件

ios 9 以后 UIAlertController取代UIAlertView和UIActionSheet UIAlertControllerStyleAlert和UIAlertControllerStyleActionSheet。 在UIAlertController中添加按钮和关联输入框 UIAlertAction共有三种类型&#xff0c;默认&#xff08;UIAlertActionStyleDefault&#xff0…...

C语言好题解析(二)

目录 递归类型例题1例题2例题3例题4例题5例题6 递归类型 例题1 根据下面递归函数&#xff1a;调用函数Fun(2)&#xff0c;返回值是多少&#xff08; &#xff09;int Fun(int n) {if (n 5)return 2;elsereturn 2 * Fun(n 1); } A.2 B.4 C.8 D.16【答案】 D 【分析】 …...

数据结构介绍

1、什么是数据结构呢&#xff1f; 计算机底层存储、组织数据的方式。是指数据相互之间是以什么方式排列在一起的。数据结构是为了更方便的管理和使用数据&#xff0c;需要结合具体的业务来进行选择。一般情况下&#xff0c;精心选择的数据结构可以带来更高的运行或者存储效率。…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式&#xff0c;然后找到相应的网卡&#xff08;可以查看自己本机的网络连接&#xff09; windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置&#xff0c;选择刚才配置的桥接模式 静态ip设置&#xff1a; 我用的ubuntu24桌…...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...

LabVIEW双光子成像系统技术

双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制&#xff0c;展现出显著的技术优势&#xff1a; 深层组织穿透能力&#xff1a;适用于活体组织深度成像 高分辨率观测性能&#xff1a;满足微观结构的精细研究需求 低光毒性特点&#xff1a;减少对样本的损伤…...

Xela矩阵三轴触觉传感器的工作原理解析与应用场景

Xela矩阵三轴触觉传感器通过先进技术模拟人类触觉感知&#xff0c;帮助设备实现精确的力测量与位移监测。其核心功能基于磁性三维力测量与空间位移测量&#xff0c;能够捕捉多维触觉信息。该传感器的设计不仅提升了触觉感知的精度&#xff0c;还为机器人、医疗设备和制造业的智…...