当前位置: 首页 > news >正文

【论文阅读】基于深度学习的时序预测——Autoformer

系列文章链接
论文一:2020 Informer:长时序数据预测
论文二:2021 Autoformer:长序列数据预测
论文三:2022 FEDformer:长序列数据预测
论文四:2022 Non-Stationary Transformers:非平稳性时序预测
论文五:2022 Pyraformer:基于金字塔图结构的时序预测
论文六:2023 Crossformer:多变量时序预测
论文七:2023 LTSF-Linear:质疑transformer能力的线性预测模型

论文链接:https://arxiv.org/abs/2106.13008
github链接:https://github.com/thuml/Autoformer
解读参考:https://zhuanlan.zhihu.com/p/386955393
视频解读:https://www.bilibili.com/video/BV1kb4y1s7iA/?spm_id_from=333.337.search-card.all.click&vd_source=c912801c215d811162cae4db751b0768

清华大学吴海旭的论文(时间序列领域前沿论文制造机,实验室公众号搜索:THUML),考虑到的背景问题有以下几点:

  1. 原始时序数据中的依赖关系难以提取;
  2. 对于长时序数据而言,transformer计算的二次计算复杂度过高;
  3. 前人提出的Informer模型虽然降低了复杂度,但是存在原始信息的丢失;

基于对时序数据分解和序列周期性分布特性的理解,本文主要有以下几个创新点:
在这里插入图片描述

  • 序列分解模块(Series Decomposition Block):传统的时间序列分解可以获取时序数据的季节性(seasonal)、趋势(trend)等分布特性,这种对于时序数据而言其实是十分重要的特性;因此本文基于此思想,提出了一种时间序列分解的思想,具体计算如下: X t = A v g P o o l ( P a d d i n g ( X ) ) X_t=AvgPool(Padding(X)) Xt=AvgPool(Padding(X)) X s = X − X t X_s=X-X_t Xs=XXt其中采用Padding来保证序列的维度一致性,然后通过平均池化可以得到时序数据的趋势分布向量 X t X_t Xt,用原向量 X X X减去趋势向量可以得到具有季节性分布特性的向量 X s X_s Xs
  • 自相关机制(Auto Correlation Mechanism):采用自相关系数计算找到与当前子序列关联性更大的序列用于指导预测数据生成;当序列的相似性越高时,滞后相乘的自相关系数就会越大,计算如下: R x x ( T ) = l i m L − > ∞ 1 L ∑ L X X T i = 1 R_{xx}(T)=\underset {L->\infty}{lim}\frac{1}{L}\underset{i=1}{\sum^LXX_T} Rxx(T)=L>limL1i=1LXXT其中T表示滞后间隔的设定, X X X表示原始时序数据, X T X_T XT表示滞后时时序数据。
    在这里插入图片描述
    基于这种思想,就可以针对时序数据计算在不同步长的情况下,对应的自相关系数,得到一个自相关系数向量(选取TopK个自相关很强的自相关序列),再通过softmax函数将向量转换成对应的概率分布向量,作为权重分布;本文用Auto-Correlation替代transformer中的self-attention的计算过程;为了加速计算,采用快速傅立叶FFT运算去找到最合理的滞后步长选择,能够快速得到合理的TopK自相关向量的计算;

在本文的Encoder中,更注重关注时序数据的季节性特性,因此保留的数据都是经分解后的季节性数据;在Decoder中,会将分解后的季节性、趋势性时序都作为输入,并且将原始序列的部分数据拼接在初始位置,用于指导后续序列的预测,网络具体运算细节可以参考原文;

相关文章:

【论文阅读】基于深度学习的时序预测——Autoformer

系列文章链接 论文一:2020 Informer:长时序数据预测 论文二:2021 Autoformer:长序列数据预测 论文三:2022 FEDformer:长序列数据预测 论文四:2022 Non-Stationary Transformers:非平…...

【AI】《动手学-深度学习-PyTorch版》笔记(十五):网络中的层、块和参数

AI学习目录汇总 1、什么是块? 在线性模型中,我们关注过单个神经元(单个神经网络的输入和输出); 在多层感知机中,我们关注过整层的神经元(前一层的输出作为后一层的输入); 如果将“多层感知机”视为一整体,称为“块”,可以将前一个块的输出作为后一个块的输入。 块…...

Flink之Task解析

Flink之Task解析 对Flink的Task进行解析前,我们首先要清楚几个角色TaskManager、Slot、Task、Subtask、TaskChain分别是什么 角色注释TaskManager在Flink中TaskManager就是一个管理task的进程,每个节点只有一个TaskManagerSlotSlot就是TaskManager中的槽位,一个TaskManager中可…...

计算机竞赛 python 爬虫与协同过滤的新闻推荐系统

1 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 python 爬虫与协同过滤的新闻推荐系统 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分工作量:3分创新点:4分 该项目较为新颖&…...

如何使用Kali Linux进行密码破解?

今天我们探讨Kali Linux的应用,重点是如何使用它来进行密码破解。密码破解是渗透测试中常见的任务,Kali Linux为我们提供了强大的工具来帮助完成这项任务。 1. 密码破解简介 密码破解是一种渗透测试活动,旨在通过不同的方法和工具来破解密码…...

【Freertos基础教程】任务管理之基本使用

文章目录 前言一、freertos任务管理是什么?二、任务管理涉及到的一些概念1.任务状态2.优先级3.栈(Stack)4.事件驱动5.协助式调度(Co-operative Scheduling) 二、任务的基本操作1.创建任务什么是任务 2.创建任务3.任务的删除4.任务的调度3.简单示例 总结 前言 本fre…...

VMware安装BC-linux-eluer 21.10,配置网络

参考配置:https://hiworld.blog.csdn.net/article/details/121608950 /etc/sysconfig/network-scripts/ifcfg-ens33 配置内容如下: TYPEEthernet PROXY_METHODnone BROWSER_ONLYno BOOTPROTOstatic DEFROUTEyes IPV4_FAILURE_FATALno IPV6INITyes IPV6_…...

2023最新Windows编译ffmpeg详细教程,附msys2详细安装配置教程

安装MSYS2 msys2是一款跨平台编译套件,它模拟linux编译环境,支持整合mingw32和mingw64,能很方便的在windows上对一些开源的linux工程进行编译运行。 类似的跨平台编译套件有:msys,cygwin,mingw 优势&…...

【SpringBoot】87、SpringBoot中集成Redisson实现Redis分布式锁

1、Redisson 介绍 Redisson 是架设在 Redis 基础上的一个 Java 驻内存数据网格(In-Memory Data Grid)。Redisson 在基于 NIO 的 Netty 框架上,充分的利用了 Redis 键值数据库提供的一系列优势,在 Java 实用工具包中常用接口的基础上,为使用者提供了一系列具有分布式特性的…...

宝藏级画图工具-drawio

今天推荐一款非常好用的免费开源画图工具drawio. Drawio即可以下载安装到本地,也可以在线编辑,在线编辑网址为 https://app.diagrams.net/。 本地版下载地址为https://github.com/jgraph/drawio-desktop/releases 1、支持各类图形 Drawio可以非常便捷…...

36_windows环境debug Nginx 源码-使用 VSCode 和WSL

文章目录 配置 WSL编译 NginxVSCode 安装插件launch.json配置 WSL sudo apt-get -y install gcc cmake sudo apt-get -y install pcre sudo apt-get -y install libpcre3 libpcre3-dev sudo apt-get...

海康威视iVMS综合安防系统任意文件上传(0Day)

漏洞描述 攻击者通过请求/svm/api/external/report接口任意上传文件,导致获取服务器webshell权限,同时可远程进行恶意代码执行。 免责声明 技术文章仅供参考,任何个人和组织使用网络应当遵守宪法法律,遵守公共秩序,尊重社会公德,不得利用网络从事危害国家安全、荣誉和…...

SOME/IP通信对数据包的大小有要求

SOME/IP通信对数据包的大小有要求,因为SOME/IP是基于UDP协议的,而UDP协议有一个最大传输单元(MTU)的限制,即每个数据包的大小不能超过MTU的值。 不同的网络环境下,MTU的值可能不同,一般在1500字节到9000字节之间。 如果SOME/IP数据包的大小超过了MTU的值,那么就需要进…...

苹果电脑会自动清理垃圾吗 苹果电脑系统垃圾怎么清除

苹果电脑是很多人喜欢使用的一种电脑,它有着优美的外观,流畅的操作系统,丰富的应用程序和高效的性能。但是,随着时间的推移,苹果电脑也会产生一些不必要的文件和数据,这些文件和数据就是我们常说的垃圾。那…...

【0216】stats collector(统计信息收集器)资源初始化之获取IPV4套接字地址信息(2)

相关阅读: 【0215】stats collector(统计信息收集器)工作原理之资源初始化(1) 1. 如何获取ipv4套接字地址信息 在【0215】stats collector(统计信息收集器)工作原理之资源初始化(1)一文的2.1.3节中讲解了stats collector进程会创建UDP,与其他进程进行通信,从而实现…...

uni-app 面容、指纹识别插件(uni-face-login)

面容、指纹识别插件(uni-face-login) 介绍 人脸指纹登录授权,可以使用手机自带的人脸、指纹进行生物识别,进而判断是否机主本人,从而进行授权验证,适配安卓、iOS、鸿蒙设备 猛戳这里去插件市场看看 使用 该插件支持鸿蒙、安卓…...

专治疗懒病:GO、KEGG富集分析一体函数

之前我们写过GO、KEGG的富集分析,参见:补充更新:GO、KEGG(批量分组)分析及可视化。演示了差异基因KEGG或者GO的分析流程。其实差异基因的富集分析输入的文件只需要一组基因就可以了。所以我们发挥了专治懒病的优良传统…...

pygame第6课——贪吃蛇小游戏

今天我们开始Pygame的第六课,前几节课的内容在这里【点我】,欢迎大家前去考古: 今天我们一起来学习制作一个小游戏【贪吃蛇】,这是一个非常经典的小游戏,那么我们一起开始吧 1、游戏准备工作 import pygame, random,o…...

iptables之iptables表、链、规则 、匹配模式、扩展模块、连接追踪模块(一)

一、iptables的链 1.请求到达本机: PREROUTING --> INPUT --> Local Process (本机) 2.请求经过本机: PREROUTING --> FORWARD --> POSTROUTING 3.请求从本机发出:local Process(本机&#xf…...

Mac 卸载appium

安装了最新版的appium 2.0.1,使用中各种问题,卡顿....,最终决定回退的。记录下卸载的过程 1.打开终端应用程序 2.卸载全局安装的 Appium 运行以下命令以卸载全局安装的 Appium: npm uninstall -g appium 出现报错:Error: EACCES: permiss…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

企业如何增强终端安全?

在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...

AI,如何重构理解、匹配与决策?

AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

DingDing机器人群消息推送

文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...