当前位置: 首页 > news >正文

多维时序 | MATLAB实现WOA-CNN-BiGRU-Attention多变量时间序列预测

多维时序 | MATLAB实现WOA-CNN-BiGRU-Attention多变量时间序列预测

目录

    • 多维时序 | MATLAB实现WOA-CNN-BiGRU-Attention多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

1

4

6

基本介绍

多维时序 | MATLAB实现WOA-CNN-BiGRU-Attention多变量时间序列预测
1.程序平台:无Attention适用于MATLAB 2020版及以上版本;融合Attention要求Matlab2023版以上
2.代码说明:基于鲸鱼优化算法(WOA)、卷积神经网络(CNN)和双向门控循环单元网络(BiGRU)融合注意力机制的超前24步多变量时间序列回归预测算法;
3.多变量特征输入,单序列变量输出,输入前一天的特征,实现后一天的预测,超前24步预测;
4.通过WOA优化算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以最小MAPE为目标函数;
5.提供MAPE、RMSE、MAE等计算结果展示。
6.适用领域:风速预测、光伏功率预测、发电功率预测、碳价预测等多种应用。
7.使用便捷:直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。

模型描述

WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元多输入单输出回归预测"是一个复杂的算法模型,可以用于回归预测问题,下面对其进行解释:
WOA-CNN-BiGRU鲸鱼算法:这是一种基于鲸鱼优化算法的神经网络优化算法,用于优化神经网络的参数。
多输入单输出:该模型接受多个输入,并输出一个预测结果。
回归预测:该模型用于回归问题,即预测连续值输出。
综上所述,该算法模型可以将多个输入数据传入模型,通过卷积神经网络提取特征,然后通过双向门控循环单元处理序列数据中的长期依赖关系,最后将处理后的数据进行回归预测,输出一个连续值结果。通过鲸鱼优化算法对神经网络的参数进行优化,提高预测准确率。

程序设计

  • 完整源码和数据获取方式:私信博主回复MATLAB实现WOA-CNN-BiGRU-Attention多变量时间序列预测
%%  获取最优种群for j = 1 : SearchAgentsif(fitness_new(j) < GBestF)GBestF = fitness_new(j);GBestX = X_new(j, :);endend%%  更新种群和适应度值pop_new = X_new;fitness = fitness_new;%%  更新种群 [fitness, index] = sort(fitness);for j = 1 : SearchAgentspop_new(j, :) = pop_new(index(j), :);end%%  得到优化曲线curve(i) = GBestF;avcurve(i) = sum(curve) / length(curve);
end%%  得到最优值
Best_pos = GBestX;
Best_score = curve(end);%%  得到最优参数
NumOfUnits       =abs(round( Best_pos(1,3)));       % 最佳神经元个数
InitialLearnRate =  Best_pos(1,2) ;% 最佳初始学习率
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
% 
inputSize = k;
outputSize = 1;  %数据输出y的维度  
%  参数设置
opts = trainingOptions('adam', ...                    % 优化算法Adam'MaxEpochs', 20, ...                              % 最大训练次数'GradientThreshold', 1, ...                       % 梯度阈值'InitialLearnRate', InitialLearnRate, ...         % 初始学习率'LearnRateSchedule', 'piecewise', ...             % 学习率调整'LearnRateDropPeriod', 6, ...                     % 训练次后开始调整学习率'LearnRateDropFactor',0.2, ...                    % 学习率调整因子'L2Regularization', L2Regularization, ...         % 正则化参数'ExecutionEnvironment', 'gpu',...                 % 训练环境'Verbose', 0, ...                                 % 关闭优化过程'SequenceLength',1,...'MiniBatchSize',10,...'Plots', 'training-progress');                    % 画出曲线

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关文章:

多维时序 | MATLAB实现WOA-CNN-BiGRU-Attention多变量时间序列预测

多维时序 | MATLAB实现WOA-CNN-BiGRU-Attention多变量时间序列预测 目录 多维时序 | MATLAB实现WOA-CNN-BiGRU-Attention多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 多维时序 | MATLAB实现WOA-CNN-BiGRU-Attention多变量时间序列预测 1.程…...

金蝶软件实现Excel数据复制分录信息粘贴到单据体分录行中

>>>适合KIS云专业版V16.0|KIS云旗舰版V7.0|K/3 WISE 14.0等版本<<< 实现Excel数据复制分录信息粘贴到金蝶单据体分录中,在采购订单|采购入库单|销售订单|销售出库单等类型单据中,以少量的必要字段在excel表格中按模板填列好,很方便快捷地复制到金蝶单据表体…...

【Linux操作系统】深入探索Linux进程:创建、共享与管理

进程的创建是Linux系统编程中的重要概念之一。在本节中&#xff0c;我们将介绍进程的创建、获取进程ID和父进程ID、进程共享、exec函数族、wait和waitpid等相关内容。 文章目录 1. 进程的创建1.1 函数原型和返回值1.2 函数示例 2. 获取进程ID和父进程ID2.1 函数原型和返回值2.…...

【云原生、k8s】Calico网络策略

第四阶段 时 间&#xff1a;2023年8月17日 参加人&#xff1a;全班人员 内 容&#xff1a; Calico网络策略 目录 一、前提配置 二、Calico网络策略基础 1、创建服务 2、启用网络隔离 3、测试网络隔离 4、允许通过网络策略进行访问 三、Calico网络策略进阶 1、创…...

Unity3D 测试总结

windows 平台上导出 exe 文件 在Unity界面中&#xff0c;点击菜单栏的“File”&#xff0c;选择“Build Settings”。 在“Build Settings”窗口中&#xff0c;选择要生成的平台&#xff08;例如Windows&#xff09;。 点击“Player Settings”按钮&#xff0c;进入“Player Se…...

【无线点对点网络时延分析和可视化】模拟无线点对点网络中的延迟以及物理层和数据链路层之间的相互作用(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

在思科(Cisco)路由器中使用 SNMP

什么是SNMP SNMP&#xff0c;称为简单网络管理协议&#xff0c;被发现可以解决具有复杂网络设备的复杂网络环境&#xff0c;SNMP 使用标准化协议来查询网络上的设备&#xff0c;为网络管理员提供保持网络环境稳定和远离停机所需的重要信息。 为什么要在思科设备中启用SNMP S…...

【压测】wg/wrk 轻量级压测

wg/wrk 轻量级压测 说明&#xff1a;环境是 centos&#xff0c;不过现在 centos 免费版本不再更新和维护了&#xff0c;所以大家可以用阿里云的或者用 ubuntu 内核 用的 https://github.com/wg/wrk.git 有 35k star 然后据我了解&#xff0c;windows 用 wrk 压测有点麻烦&…...

Redis可以用作消息队列吗?如何实现简单的消息队列功能?

是的&#xff0c;Redis可以被用作简单的消息队列。下面是一种实现简单消息队列功能的方式&#xff1a; 生产者&#xff08;Producer&#xff09;端&#xff1a; 使用LPUSH命令将消息推送到一个列表中&#xff0c;作为消息队列的实现。例如&#xff0c;使用LPUSH命令将消息推送到…...

[Java基础]对象转型

系列文章目录 【Java基础】Java总览_小王师傅66的博客-CSDN博客 [Java基础]基本概念(上)(标识符,关键字,基本数据类型)_小王师傅66的博客-CSDN博客 [Java基础]基本概念(下)运算符,表达式和语句,分支,循环,方法,变量的作用域,递归调用_小王师傅66的博客-CSDN博客 Java字节码…...

JVM——类文件结构

文章目录 一 概述二 Class 文件结构总结2.1 魔数2.2 Class 文件版本2.3 常量池2.4 访问标志2.5 当前类索引,父类索引与接口索引集合2.6 字段表集合2.7 方法表集合2.8 属性表集合 一 概述 在 Java 中&#xff0c;JVM 可以理解的代码就叫做字节码&#xff08;即扩展名为 .class …...

银河麒麟服务器v10 sp1 .Net6.0 上传文件错误

上一篇&#xff1a;银河麒麟服务器v10 sp1 部署.Net6.0 http https_csdn_aspnet的博客-CSDN博客 .NET 6之前&#xff0c;在Linux服务器上安装 libgdiplus 即可解决&#xff0c;libgdiplus是System.Drawing.Common原生端跨平台实现的主要提供者&#xff0c;是开源mono项目。地址…...

C#实现普通的语音播报

Windows有文字转语音功能&#xff0c;C#提供了调用的类库Interop.SpeechLib.dll 使用方法很简单&#xff0c;在你的项目中添加Interop.SpeechLib.dll引用&#xff0c;在类中引用&#xff1a; using SpeechLib;这里提供一个CVoice类 帮助实现语音播报 public class CVoice{pri…...

django中实现事务的几种方式

1.实现事务的三种方式 1.1 全局开启事务---> 全局开启事务&#xff0c;绑定的是http请求响应整个过程 DATABASES {default: {#全局开启事务&#xff0c;绑定的是http请求响应整个过程ATOMIC_REQUESTS: True, }} from django.db import transaction# 局部禁用事务 transac…...

【es6】具名组匹配

1、组匹配 正则表达式使用圆括号进行组匹配&#xff0c;如&#xff1a;const RE_DATE /(\d{4})-(\d{2})-(\d{2})/;,三个圆括号形成了三个组匹配。 代码&#xff1a; const RE_DATE /(\d{4})-(\d{2})-(\d{2})/;const matchObj RE_DATE.exec(1999-12-31); const year matchO…...

自然语言处理技术:NLP句法解析树与可视化方法

自然语言处理(Natural Language Processing,NLP)句法解析树是一种表示自然语言句子结构的图形化方式。它帮助将句子中的每个词汇和短语按照语法规则连接起来,形成一个树状结构,以便更好地理解句子的语法结构和含义。句法解析树对于理解句子的句法关系、依存关系以及语义角…...

flinksql报错 Cannot determine simple type name “org“

flink版本 1.15 报错内容 2023-08-17 15:46:02 java.lang.RuntimeException: Could not instantiate generated class WatermarkGenerator$0at org.apache.flink.table.runtime.generated.GeneratedClass.newInstance(GeneratedClass.java:74)at org.apache.flink.table.runt…...

e.target.value和 binding.value 区别

e.target.value 和 binding.value 都是在 Vue.js 中用于处理事件绑定时的值&#xff0c;但它们的使用场景和含义有所不同&#xff0c;分别用于普通的 DOM 事件和自定义指令。 e.target.value&#xff1a; 这是常用于原生 DOM 事件处理函数中的一个属性&#xff0c;用于获取事件…...

软链接与exec进程替换运行路径问题

目录 1. 代码&#xff08;1&#xff09;启动进程execvp&#xff08;2&#xff09;替换的新进程new_proc 2. 验证&#xff08;1&#xff09;new_proc与execvp源文件同一目录&#xff08;2&#xff09;new_proc与execvp软链接同一目录 3. 总结4. errno.h 用execvp软链接启动进程&…...

【Go】锁相关

文章目录 Mutex锁mutex源码分析LockUnLock mutex两种运行模式mutex normal 正常模式自旋 mutex starvation 饥饿模式 锁的底层实现类型 RWMutexRWMutex 实现其他共享内存线程安全的方式 思考如何设计一个并发更高的锁&#xff1f; Mutex锁 mutex源码分析 Locker接口&#xff…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...