当前位置: 首页 > news >正文

【JS 线性代数算法之向量与矩阵】

线性代数算法

  • 一、向量的加减乘除
    • 1. 向量加法
    • 2. 向量减法
    • 3. 向量数乘
    • 4. 向量点积
    • 5. 向量叉积
  • 二、矩阵的加减乘除
    • 1. 矩阵加法
    • 2. 矩阵减法
    • 3. 矩阵数乘
    • 4. 矩阵乘法
  • 常用数学库

线性代数是数学的一个分支,用于研究线性方程组及其解的性质、向量空间及其变换的性质等。在计算机科学领域中,线性代数常用于图形学、机器学习、计算机视觉等领域。本文将详细介绍 JS 中常用的线性代数算法,并提供代码示例。

一、向量的加减乘除

向量是有大小和方向的量,通常用一列数表示。向量的加减乘除运算也是线性代数中的基本运算。

1. 向量加法

向量加法计算两个向量相加的结果。

例如:给定两个二维向量:

a ⃗ = [ 1 2 ] , b ⃗ = [ 3 4 ] \vec{a}=\begin{bmatrix} 1 \\ 2 \end{bmatrix},\vec{b}=\begin{bmatrix} 3 \\ 4 \end{bmatrix} a =[12],b =[34]

则它们的和为:

a ⃗ + b ⃗ = [ 4 6 ] \vec{a}+\vec{b}=\begin{bmatrix} 4 \\ 6 \end{bmatrix} a +b =[46]

代码实现:

function addVectors(a, b) {if (a.length !== b.length) return null;return a.map((n, i) => n + b[i]);
}

2. 向量减法

向量减法计算两个向量相减的结果。

例如:给定两个三维向量:

a ⃗ = [ 1 3 2 ] , b ⃗ = [ 4 1 5 ] \vec{a}=\begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix},\vec{b}=\begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix} a = 132 ,b = 415

则它们的差为:

a ⃗ − b ⃗ = [ − 3 2 − 3 ] \vec{a}-\vec{b}=\begin{bmatrix} -3 \\ 2 \\ -3 \end{bmatrix} a b = 323

代码实现:

function subtractVectors(a, b) {if (a.length !== b.length) return null;return a.map((n, i) => n - b[i]);
}

3. 向量数乘

向量数乘是将一个向量的每个元素乘以一个标量。

例如:给定一个三维向量:

a ⃗ = [ 1 3 2 ] \vec{a}=\begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} a = 132

则它乘以标量 k = 2 k=2 k=2 的结果为:

k a ⃗ = 2 [ 1 3 2 ] = [ 2 6 4 ] k \vec{a}=2\begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}=\begin{bmatrix} 2 \\ 6 \\ 4 \end{bmatrix} ka =2 132 = 264

代码实现:

function scalarMultiply(vector, scalar) {return vector.map(n => n * scalar);
}

4. 向量点积

向量点积(也称为内积或数量积)计算两个向量的乘积的和。

例如:给定两个三维向量:

a ⃗ = [ 1 3 2 ] , b ⃗ = [ 4 1 5 ] \vec{a}=\begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix},\vec{b}=\begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix} a = 132 ,b = 415

则它们的点积为:

a ⃗ ⋅ b ⃗ = 1 × 4 + 3 × 1 + 2 × 5 = 17 \vec{a} \cdot \vec{b}=1 \times 4 + 3 \times 1 + 2 \times 5 = 17 a b =1×4+3×1+2×5=17

代码实现:

function dotProduct(a, b) {if (a.length !== b.length) return null;return a.reduce((sum, n, i) => sum + n * b[i], 0);
}

5. 向量叉积

向量叉积(也称为外积或向量积)计算两个向量的垂直于它们所在平面的法向量。向量叉积只适用于三维向量。

例如:给定两个三维向量:

a ⃗ = [ 1 3 2 ] , b ⃗ = [ 4 1 5 ] \vec{a}=\begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix},\vec{b}=\begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix} a = 132 ,b = 415

则它们的叉积为:

a ⃗ × b ⃗ = [ 13 3 − 11 ] \vec{a} \times \vec{b}=\begin{bmatrix} 13 \\ 3 \\ -11 \end{bmatrix} a ×b = 13311

代码实现:

function crossProduct(a, b) {if (a.length !== 3 || b.length !== 3) return null;const [ax, ay, az] = a;const [bx, by, bz] = b;return [ay * bz - az * by, az * bx - ax * bz, ax * by - ay * bx];
}

二、矩阵的加减乘除

矩阵是由若干行若干列的数排成的矩形阵列,通常用两个下标表示。矩阵的加减乘除运算也是线性代数中的基本运算。

1. 矩阵加法

矩阵加法计算两个矩阵相加的结果。

例如:给定两个 2 × 2 2 \times 2 2×2 的矩阵:

[ 1 2 3 4 ] , [ 5 6 7 8 ] \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} , \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} [1324],[5768]

则它们的和为:

[ 6 8 10 12 ] \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix} [610812]

代码实现:

function addMatrices(a, b) {if (a.length !== b.length || a[0].length !== b[0].length) return null;return a.map((row, i) => row.map((n, j) => n + b[i][j]));
}

2. 矩阵减法

矩阵减法计算两个矩阵相减的结果。

例如:给定两个 3 × 3 3 \times 3 3×3 的矩阵:

[ 1 3 2 4 8 5 6 1 2 ] , [ 2 1 5 3 6 4 1 7 3 ] \begin{bmatrix} 1 & 3 & 2 \\ 4 & 8 & 5 \\ 6 & 1 & 2 \end{bmatrix} , \begin{bmatrix} 2 & 1 & 5 \\ 3 & 6 & 4 \\ 1 & 7 & 3 \end{bmatrix} 146381252 , 231167543

则它们的差为:

[ − 1 2 − 3 1 2 1 5 − 6 − 1 ] \begin{bmatrix} -1 & 2 & -3 \\ 1 & 2 & 1 \\ 5 & -6 & -1 \end{bmatrix} 115226311

代码实现:

function subtractMatrices(a, b) {if (a.length !== b.length || a[0].length !== b[0].length) return null;return a.map((row, i) => row.map((n, j) => n - b[i][j]));
}

3. 矩阵数乘

矩阵数乘是将一个矩阵的每个元素乘以一个标量。

例如:给定一个 2 × 2 2 \times 2 2×2 的矩阵:

[ 1 3 2 5 ] \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix} [1235]

则它乘以标量 k = 2 k=2 k=2 的结果为:

2 × [ 1 3 2 5 ] = [ 2 6 4 10 ] 2 \times \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}=\begin{bmatrix} 2 & 6 \\ 4 & 10 \end{bmatrix} 2×[1235]=[24610]

代码实现:

function scalarMultiplyMatrix(matrix, scalar) {return matrix.map(row => row.map(n => n * scalar));
}

4. 矩阵乘法

矩阵乘法计算两个矩阵相乘的结果。矩阵乘法满足结合律,但不满足交换律。即 A × B ≠ B × A A \times B \neq B \times A A×B=B×A

例如:给定两个 2 × 3 2 \times 3 2×3 3 × 2 3 \times 2 3×2 的矩阵:

[ 1 2 3 4 5 6 ] , [ 7 8 9 10 11 12 ] \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} , \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12\end{bmatrix} [142536], 791181012
以下是两个 2×3 和 3×2 矩阵的乘法的 JavaScript 代码示例:

// 2x3 矩阵
const matrixA = [[1, 2, 3],[4, 5, 6]
];// 3x2 矩阵
const matrixB = [[7, 8],[9, 10],[11, 12]
];// 2x2 结果矩阵
const resultMatrix = [[0, 0],[0, 0]
];// 矩阵乘法
for (let i = 0; i < 2; i++) {for (let j = 0; j < 2; j++) {let sum = 0;for (let k = 0; k < 3; k++) {sum += matrixA[i][k] * matrixB[k][j];}resultMatrix[i][j] = sum;}
}// 输出结果
console.log(resultMatrix);

输出结果为:

[[58, 64],[139, 154]
]

上述代码中,我们首先定义了两个矩阵 matrixAmatrixB,然后定义了一个结果矩阵 resultMatrix,该矩阵的大小为 2×2。

接下来,我们通过三层循环实现了矩阵乘法。外层两个循环控制结果矩阵的行列数,内层循环计算结果矩阵中每个元素的值。

最后,我们输出了结果矩阵的值。

常用数学库

在 JavaScript 中实现线性代数算法需要使用数学库,比如 Math.js 或者 NumJS。

以下是 Math.js 的示例代码:

// 创建矩阵
const matrix1 = math.matrix([[1, 2], [3, 4]]);
const matrix2 = math.matrix([[5, 6], [7, 8]]);// 加法
const addResult = math.add(matrix1, matrix2);
console.log(addResult); // 输出 [[6, 8], [10, 12]]// 矩阵乘法
const multiplyResult = math.multiply(matrix1, matrix2);
console.log(multiplyResult); // 输出 [[19, 22], [43, 50]]// 转置
const transposeResult = math.transpose(matrix1);
console.log(transposeResult); // 输出 [[1, 3], [2, 4]]// 求逆矩阵
const inverseResult = math.inv(matrix1);
console.log(inverseResult); // 输出 [[-2, 1], [1.5, -0.5]]

以上是一些常见的线性代数算法的示例代码。使用数学库可以方便地实现复杂的线性代数计算。

相关文章:

【JS 线性代数算法之向量与矩阵】

线性代数算法 一、向量的加减乘除1. 向量加法2. 向量减法3. 向量数乘4. 向量点积5. 向量叉积 二、矩阵的加减乘除1. 矩阵加法2. 矩阵减法3. 矩阵数乘4. 矩阵乘法 常用数学库 线性代数是数学的一个分支&#xff0c;用于研究线性方程组及其解的性质、向量空间及其变换的性质等。在…...

配置 yum/dnf 置您的系统以使用默认存储库

题目 给系统配置默认存储库&#xff0c;要求如下&#xff1a; YUM 的 两 个 存 储 库 的 地 址 分 别 是 &#xff1a; ftp://host.domain8.rhce.cc/dvd/BaseOS ftp://host.domain8.rhce.cc/dvd/AppStream vim /etc/yum.repos.d/redhat.repo [base] namebase baseurlftp:/…...

Docker容器与虚拟化技术:Docker资源控制、数据管理

目录 一、理论 1.资源控制 2.Docker数据管理 二、实验 1.Docker资源控制 2.Docker数据管理 三、问题 1.docker容器故障导致大量日志集满&#xff0c;造成磁盘空间满 2、当日志占满之后如何处理 四、总结 一、理论 1.资源控制 (1) CPU 资源控制 cgroups&#xff0…...

python生成器有几种写法,python生成器函数例子

大家好&#xff0c;小编来为大家解答以下问题&#xff0c;python生成器有几种写法&#xff0c;python生成器函数例子&#xff0c;今天让我们一起来看看吧&#xff01; 本文部分参考&#xff1a;Python迭代器&#xff0c;生成器–精华中的精华 https://www.cnblogs.com/deeper/p…...

动态动画弹窗样式css

点击下载图片素材 html <div class"popWin"> </div> <div class"popPic"><div class"popWinBtn01">查看证书</div><div class"wintips01">恭喜您已完成训练营学习任务&#xff0c;荣誉证书已发放…...

数据生成 | MATLAB实现WGAN生成对抗网络数据生成

数据生成 | MATLAB实现WGAN生成对抗网络数据生成 目录 数据生成 | MATLAB实现WGAN生成对抗网络数据生成生成效果基本描述程序设计参考资料 生成效果 基本描述 1.WGAN生成对抗网络&#xff0c;数据生成&#xff0c;样本生成程序&#xff0c;MATLAB程序&#xff1b; 2.适用于MATL…...

PHP实现每日蛋白质摄入量计算器

1.laravel 路由 //每日蛋白质摄入计算器Route::get(api/protein/intake, FormulaControllerproteinIntakeCal); 2.代码 /*** 每日蛋白质摄入计算器*/public function proteinIntakeCal(){$number intval($this->request(number));$goalFactor array(0.8, 1.16, 0.8, 1.16,…...

vue elment 表格内表单校验代码

<p v-if"scope.row.id">{{ scope.row.bidderCode }}</p><el-form-itemclass"formitem"v-else:prop"bidderCode scope.row.id":rules"getValidationRules(投标人/供应商代码, scope.row.id)"><el-input v-model&…...

如何在Stream流中分组统计

上面是今天碰到需求,之前就做过类似的分组统计,这个相对来说比较简单,统计的也少,序号和总预约人数这两部分交给前端了,不需要由后端统计,后端统计一下预约日期和检查项目和预约人数就行; Overridepublic List<ItemStatisticsVo> statistics(ItemStatisticsModel itemSta…...

windows程序基础

一、windows程序基础 1. Windows程序的特点 1&#xff09;用户界面统一、友好 2&#xff09;支持多任务:允许用户同时运行多个应用程序(窗口) 3&#xff09;独立于设备的图形操作 使用图形设备接口( GDI, Graphics Device Interface )屏蔽了不同硬件设备的差异&#…...

【LeetCode】买卖股票的最佳时机最多两次购买机会

买卖股票的最佳时机 题目描述算法分析程序代码 链接: 买卖股票的最佳时机 题目描述 算法分析 程序代码 class Solution { public:int maxProfit(vector<int>& prices) {int n prices.size();vector<vector<int>> f(n,vector<int>(3,-0x3f3f3f))…...

【C++ 记忆站】命名空间

文章目录 命名空间概念命名空间的定义1、正常的命名空间定义2、命名空间可以嵌套3、同一个工程中允许存在多个相同名称的命名空间,编译器最后会合成同一个命名空间中 命名空间的使用1、加命名空间名称及作用域限定符2、使用using将命名空间中某个成员引入3、使用using namespac…...

《离散数学及其应用(原书第8版)》ISBN978-7-111-63687-8 第11章 11.1.3 树的性质 节 第664页的例9说明

《离散数学及其应用&#xff08;原书第8版&#xff09;》ISBN978-7-111-63687-8 第11章 11.1.3 树的性质 节 第664页的定理3的引申 定理3 带有i个内点的m叉树含有nmi1个顶点 见本人博文 内点定义不同的讨论 如果对于一个m叉正则树&#xff0c;即任意分支节点的儿子恰好有m个&am…...

【云原生】K8S存储卷:PV、PVC详解

目录 一、emptyDir存储卷二、hostPath存储卷三、nfs共享存储卷四、PVC 和 PV4.1 NFS使用PV和PVC4.2创建动态PV 一、emptyDir存储卷 容器磁盘上的文件的生命周期是短暂的&#xff0c;这就使得在容器中运行重要应用时会出现一些问题。首先&#xff0c;当容器崩溃时&#xff0c;ku…...

谈谈IP地址和子网掩码的概念及应用

个人主页&#xff1a;insist--个人主页​​​​​​ 本文专栏&#xff1a;网络基础——带你走进网络世界 本专栏会持续更新网络基础知识&#xff0c;希望大家多多支持&#xff0c;让我们一起探索这个神奇而广阔的网络世界。 目录 一、IP地址的概念 二、IP地址的分类 1、A类 …...

vue2 如何监听数组的变化

在Vue 2中&#xff0c;底层是通过重写数组的原型方法来实现对数组变化的监听。具体来说&#xff0c;Vue 2使用了一个名为Observer的类来劫持数组的原型方法&#xff0c;使其在调用这些方法时能够触发相应的变化通知。 当Vue 2初始化一个响应式对象时&#xff0c;如果对象是一个…...

CSS中的transform属性有哪些值?并分别描述它们的作用。

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ translate()⭐ rotate()⭐ scale()⭐ skew()⭐ matrix()⭐ scaleX() 和 scaleY()⭐ rotateX()、rotateY() 和 rotateZ()⭐ translateX() 和 translateY()⭐ skewX() 和 skewY()⭐ perspective()⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&…...

vue3跳转页面后 海康监控实例不销毁

第一个页面是这样的 跳转到新的页面 只有海康的监控没有消失 使用控制台审查元素也审查不到 解决方法&#xff1a;在vue3的销毁周期把海康的监控销毁掉 import { reactive, onDeactivated} from "vue"; const state reactive({oWebControl: null as any, //监控绑…...

Unity 射线检测

文章目录 1. 定义2. 重要类和方法2.1 Ray2.2 从屏幕发出射线&#xff1a;2.3 Raycast2.4 RaycastAll2.5 RaycastHit 碰撞信息2.6 layerMask 让射线检测只检测指定层级的对象 1. 定义 在Unity中&#xff0c;射线检测&#xff08;Raycasting&#xff09;是一种常用的技术&#x…...

微信支付报非法的密钥大小: Caused by: java.security.InvalidKeyException: Illegal key size

在Linux环境中出现 java.security.InvalidKeyException: Illegal key size 异常通常是由于Java默认的加密限制引起的。Java默认的加密强度限制了加密算法密钥的最大长度 方式一 1. 找到该目录 /usr/java/jdk1.8.0_121/jre/lib/security 2. 替换local_policy.jar 和 US_export_…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

【笔记】WSL 中 Rust 安装与测试完整记录

#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统&#xff1a;Ubuntu 24.04 LTS (WSL2)架构&#xff1a;x86_64 (GNU/Linux)Rust 版本&#xff1a;rustc 1.87.0 (2025-05-09)Cargo 版本&#xff1a;cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...