当前位置: 首页 > news >正文

单因素多变量方差分析

                多变量方差分析:是对多个独立变量是否受单个或多个因素影响而进行的方差分析。它不仅能够分析多个因素对观测变量的独立影响,更能够分析多个因素的交互作用能否对观测变量产生影响。本章以单因素多变量分析为例,即一个分组变量和多个欲分析的变量。

适用条件

各样本是相互独立,满足正态性

满足方差齐性

样本量足够大

对方差齐性的判断通常采用方差齐性检验,实际上只要各组样本含量相等或相近,即使方差不齐,方差分析仍然稳健且检验效能较高。

   在统计软件SPSS中,给出了两种方差齐性检验的方法——Bartlett χ2 检验和Levene检验。相比之下,后者更稳健,且不依赖资料的分布类型。

案例分析

        某研究人员为了解甲 、乙、丙三地男童身体发育情况,在三地分别随机调查了30名8岁男童的身高(cm)、体重(kg)、胸围(cm)指标。

问题:欲分析男童的身体发育是否相同??

数据视图

 


问题分析:

待分析的因变量为身高、体重、胸围,且均为连续型变量;自变量为地区,分类变量;


手把手教你

【1】分析——一般线性模型——多变量

 

【2】弹出如下所示对话框,将待分析的变量选入“因变量”中,“地区”选入“固定因子”

 

【3】模型(M)——定制,构建类型为“主效应”,选中地区

 

【4】选项——勾选“描述统计”,“同质性检验”  其它统计量可自行选择

 

【5】事后多重比较——将地区选入检验框,勾选“未假定方差齐性”的相应检验方法(因为事先已知不满足方差齐性)。

 

结果解析

①描述统计

 

②Levene‘s 方差齐性检验,从结果来看,只有身高满足方差齐性;但仍然可以采用方差分析(因为三组样本含量相等)。

 

③多变量检验

SPSS中给出了四种检验方法,一般选用“Pillai's  Trace”,此法相对较稳定。由结果可知,地区(F=10.983,P<0.001),三地8岁男童的身体发育状况有统计学意义。

 

④主体间效应的检验

身高(F=17.7,P<0.001),体重(F=8.210,P=0.001),胸围(F=17.436 ,P<0.001),可以认为三地2012年8岁男童的身体发育不全相同。

 

⑤多重比较

以身高为例,检验方法为Tamhane ,检验水准α = 0.05 ,地区甲与乙(P=0.002)和 甲与丙(P<0.001)存在统计学差异 , 乙与丙(P=0.078>0.05)无统计学意义。

 

相关文章:

单因素多变量方差分析

多变量方差分析&#xff1a;是对多个独立变量是否受单个或多个因素影响而进行的方差分析。它不仅能够分析多个因素对观测变量的独立影响&#xff0c;更能够分析多个因素的交互作用能否对观测变量产生影响。本章以单因素多变量分析为例&#xff0c;即一个分组变量和多个欲分析的…...

Python Web:Django、Flask和FastAPI框架对比

原文&#xff1a;百度安全验证 Django、Flask和FastAPI是Python Web框架中的三个主要代表。这些框架都有着各自的优点和缺点&#xff0c;适合不同类型和规模的应用程序。 1. Django&#xff1a; Django是一个全功能的Web框架&#xff0c;它提供了很多内置的应用程序和工具&am…...

【CI/CD】Rancher K8s

Rancher & K8s Rancher 和 K8s 的关系是什么&#xff1f;K8s 全称为 Kubernetes&#xff0c;它是一个开源的&#xff0c;用于管理云平台中多个主机上的容器化的应用。而 Rancher 是一个完全开源的企业级多集群 Kubernetes 管理平台&#xff0c;实现了 Kubernetes 集群在混合…...

nodejs 之 express 实现下载网络图片并上传到七牛云对象存储oss空间

为方便阅读&#xff0c;本文将所有逻辑放在一个函数里&#xff0c;可根据自己的情况拆分。 安装依赖 在项目根目录下运行以下命令安装依赖 npm install express qiniu axios业务逻辑 在项目根目录下创建一个名为 app.js 的文件&#xff0c;并添加以下内容 const express re…...

综合能源系统(7)——综合能源综合评估技术

综合能源系统关键技术与典型案例  何泽家&#xff0c;李德智主编 综合能源系统是多种能源系统非线性耦合的、多时间与空间尺度耦合的“源-网-荷一储”一体化系统&#xff0c;通过能源耦合、多能互补&#xff0c;能够实现能源的高效利用&#xff0c;并提高新能源的利用水平。对…...

【JS 线性代数算法之向量与矩阵】

线性代数算法 一、向量的加减乘除1. 向量加法2. 向量减法3. 向量数乘4. 向量点积5. 向量叉积 二、矩阵的加减乘除1. 矩阵加法2. 矩阵减法3. 矩阵数乘4. 矩阵乘法 常用数学库 线性代数是数学的一个分支&#xff0c;用于研究线性方程组及其解的性质、向量空间及其变换的性质等。在…...

配置 yum/dnf 置您的系统以使用默认存储库

题目 给系统配置默认存储库&#xff0c;要求如下&#xff1a; YUM 的 两 个 存 储 库 的 地 址 分 别 是 &#xff1a; ftp://host.domain8.rhce.cc/dvd/BaseOS ftp://host.domain8.rhce.cc/dvd/AppStream vim /etc/yum.repos.d/redhat.repo [base] namebase baseurlftp:/…...

Docker容器与虚拟化技术:Docker资源控制、数据管理

目录 一、理论 1.资源控制 2.Docker数据管理 二、实验 1.Docker资源控制 2.Docker数据管理 三、问题 1.docker容器故障导致大量日志集满&#xff0c;造成磁盘空间满 2、当日志占满之后如何处理 四、总结 一、理论 1.资源控制 (1) CPU 资源控制 cgroups&#xff0…...

python生成器有几种写法,python生成器函数例子

大家好&#xff0c;小编来为大家解答以下问题&#xff0c;python生成器有几种写法&#xff0c;python生成器函数例子&#xff0c;今天让我们一起来看看吧&#xff01; 本文部分参考&#xff1a;Python迭代器&#xff0c;生成器–精华中的精华 https://www.cnblogs.com/deeper/p…...

动态动画弹窗样式css

点击下载图片素材 html <div class"popWin"> </div> <div class"popPic"><div class"popWinBtn01">查看证书</div><div class"wintips01">恭喜您已完成训练营学习任务&#xff0c;荣誉证书已发放…...

数据生成 | MATLAB实现WGAN生成对抗网络数据生成

数据生成 | MATLAB实现WGAN生成对抗网络数据生成 目录 数据生成 | MATLAB实现WGAN生成对抗网络数据生成生成效果基本描述程序设计参考资料 生成效果 基本描述 1.WGAN生成对抗网络&#xff0c;数据生成&#xff0c;样本生成程序&#xff0c;MATLAB程序&#xff1b; 2.适用于MATL…...

PHP实现每日蛋白质摄入量计算器

1.laravel 路由 //每日蛋白质摄入计算器Route::get(api/protein/intake, FormulaControllerproteinIntakeCal); 2.代码 /*** 每日蛋白质摄入计算器*/public function proteinIntakeCal(){$number intval($this->request(number));$goalFactor array(0.8, 1.16, 0.8, 1.16,…...

vue elment 表格内表单校验代码

<p v-if"scope.row.id">{{ scope.row.bidderCode }}</p><el-form-itemclass"formitem"v-else:prop"bidderCode scope.row.id":rules"getValidationRules(投标人/供应商代码, scope.row.id)"><el-input v-model&…...

如何在Stream流中分组统计

上面是今天碰到需求,之前就做过类似的分组统计,这个相对来说比较简单,统计的也少,序号和总预约人数这两部分交给前端了,不需要由后端统计,后端统计一下预约日期和检查项目和预约人数就行; Overridepublic List<ItemStatisticsVo> statistics(ItemStatisticsModel itemSta…...

windows程序基础

一、windows程序基础 1. Windows程序的特点 1&#xff09;用户界面统一、友好 2&#xff09;支持多任务:允许用户同时运行多个应用程序(窗口) 3&#xff09;独立于设备的图形操作 使用图形设备接口( GDI, Graphics Device Interface )屏蔽了不同硬件设备的差异&#…...

【LeetCode】买卖股票的最佳时机最多两次购买机会

买卖股票的最佳时机 题目描述算法分析程序代码 链接: 买卖股票的最佳时机 题目描述 算法分析 程序代码 class Solution { public:int maxProfit(vector<int>& prices) {int n prices.size();vector<vector<int>> f(n,vector<int>(3,-0x3f3f3f))…...

【C++ 记忆站】命名空间

文章目录 命名空间概念命名空间的定义1、正常的命名空间定义2、命名空间可以嵌套3、同一个工程中允许存在多个相同名称的命名空间,编译器最后会合成同一个命名空间中 命名空间的使用1、加命名空间名称及作用域限定符2、使用using将命名空间中某个成员引入3、使用using namespac…...

《离散数学及其应用(原书第8版)》ISBN978-7-111-63687-8 第11章 11.1.3 树的性质 节 第664页的例9说明

《离散数学及其应用&#xff08;原书第8版&#xff09;》ISBN978-7-111-63687-8 第11章 11.1.3 树的性质 节 第664页的定理3的引申 定理3 带有i个内点的m叉树含有nmi1个顶点 见本人博文 内点定义不同的讨论 如果对于一个m叉正则树&#xff0c;即任意分支节点的儿子恰好有m个&am…...

【云原生】K8S存储卷:PV、PVC详解

目录 一、emptyDir存储卷二、hostPath存储卷三、nfs共享存储卷四、PVC 和 PV4.1 NFS使用PV和PVC4.2创建动态PV 一、emptyDir存储卷 容器磁盘上的文件的生命周期是短暂的&#xff0c;这就使得在容器中运行重要应用时会出现一些问题。首先&#xff0c;当容器崩溃时&#xff0c;ku…...

谈谈IP地址和子网掩码的概念及应用

个人主页&#xff1a;insist--个人主页​​​​​​ 本文专栏&#xff1a;网络基础——带你走进网络世界 本专栏会持续更新网络基础知识&#xff0c;希望大家多多支持&#xff0c;让我们一起探索这个神奇而广阔的网络世界。 目录 一、IP地址的概念 二、IP地址的分类 1、A类 …...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中&#xff0c;我们已经大致实现了rpc服务端的各项功能代…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

HTML 列表、表格、表单

1 列表标签 作用&#xff1a;布局内容排列整齐的区域 列表分类&#xff1a;无序列表、有序列表、定义列表。 例如&#xff1a; 1.1 无序列表 标签&#xff1a;ul 嵌套 li&#xff0c;ul是无序列表&#xff0c;li是列表条目。 注意事项&#xff1a; ul 标签里面只能包裹 li…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...