自动驾驶,一次道阻且长的远征|数据猿直播干货分享
数据智能产业创新服务媒体
——聚焦数智 · 改变商业
在6月的世界人工智能大会上,马斯克在致辞中宣称,到2023年底,特斯拉便可实现L4级或L5级的完全自动驾驶(FSD)。两个月之后,马斯克又在X社交平台上发言:特斯拉正在攻关车辆控制技术,完成FSD人工智能的最后一块拼图。
这意味着,在绝大多数厂商集中攻关L2级、L3级自动驾驶之际,特斯拉直接跳过L3级,直达L4级、L5级的技术终局。马斯克的一系列发言,震惊了汽车业界。
特斯拉的进展,让BEV+Transformer算法的技术路线,逐渐成为业界的主流。中国的蔚小理+华为紧随其后,在城市NOA取得突破。城市NOA是高阶自动驾驶的蝶变,已接近L3级自动驾驶。2023年又被称为城市NOA元年。
在城市NOA火爆之际,国内的L4级自动驾驶,也在取得突破。就在7月,北京亦庄、上海嘉定先后批准了自动驾驶“车内无人”的相关试点。
通向自动驾驶之路,是一次道阻且长的远征。正当智能辅助驾驶进入下半场之际,数据猿邀请利氪科技合伙人兼副总裁文亮、火山引擎智驾云负责人张路、焱融科技分布式存储架构师马志刚举行一场直播对话,直面自动驾驶的问题和解法,展望自动驾驶的未来,献上一场思维碰撞的盛宴。
以下为完整直播回放:
分级正在淡化,业界更关心落地场景
《汽车驾驶自动化分级》国家标准将自动驾驶划分为L0-L5六个等级标准:L0是纯人工驾驶,L1是驾驶自动化,L2是辅助驾驶,L3是自动辅助驾驶,L4是自动驾驶,L5是无人驾驶。
在行业发展趋势上,随着自动泊车、高速巡航、城市NOA等自动驾驶功能走向普及,业界关注的重心已从热衷追求自动驾驶等级,转向具体场景落地。
利氪科技的文亮说,自动驾驶等级由国际性汽车工程师研究会(SAE)明确提出,目的是展示从“人驾”到“人机共驾”最后到“机器驾”的演变过程。但在具体实践中,从L0级-L5级的划分正慢慢淡化,业界更关注自动驾驶的落地场景。落地场景,有泊车场景,有高速场景,有城市场景,业界根据这些场景划分功能,部署落地,更多是从客户体验出发,以客户的最终感受为主。
火山引擎的张路说,自动驾驶业界正围绕城市NOA等点状功能在布局,对L0级-L5级别的划分并不在意。在张路看来,乘用车最终卖给消费者,消费者关注什么,企业就应当做什么。消费者不在乎自动驾驶等级,更关注的是具体的功能。通过“堆硬件”方式追求L3级、L4级自动驾驶的一些公司发现,消费者对此根本不会埋单。因此,“堆”硬件的方式在业界早已过时,行业的重心是围绕点状功能展开布局,满足消费者的需求。商用车的自动驾驶,则更关心商业闭环能不能成功,对自动驾驶等级的划分,也不在意。
焱融科技的马志刚也认为,自动驾驶的最终落地,离不开具体的场景。在他看来,自动驾驶的普及要最终落到“点”上,也就是落到驾驶安全、用户体感这些“点”上。对于自动驾驶,安不安全、好不好用,才是最关键之处。
纯视觉还是雷达,要看产品本身的表现
场景化,是自动驾驶的未来。为实现场景化的自动驾驶,各大厂商提出了不同的技术路线。纯视觉方案pk激光雷达的技术路线之争,正是自动驾驶领域的一大看点。
在火山引擎的张路看来,特斯拉BEV+Transformer算法的技术标准已经跑通,在美国,特斯拉很快就可以实现FSD。在这个背景下,国内厂商的技术路线已经趋同,不同的只是推进速度的快慢。据张路介绍,以蔚小理为代表的造车新势力技术路线已十分明确,就是BEV+Transformer路线,解决方案上视觉为主,雷达为辅。
对于视觉和雷达之争,利氪的文亮说,其实对于用不用雷达,特斯拉也纠结了许久。对于自动驾驶而言,从安全上考虑,感知工具越多越好,但要落地量产,就一定要有一个取舍。特斯拉的纯视觉方案,目前来看似乎代表了一个方向,但从长远来看,用激光雷达还是用纯视觉方案,还要看产品本身的表现。在文亮看来,即便特斯拉的纯视觉方案取得了成功,激光雷达、毫米波雷达也不会被彻底淘汰,仍会沿着既定的技术路线走向去。或许在将来的某个时间点,激光雷达也会出现新的技术突破。
焱融的马志刚更为倾向视觉+雷达的组合式方案。在马志刚看来,每一种探测手段,都有自己的局限性。之所以自动驾驶至今还不够完美,主要是数据感知、数据处理、数据治理的闭环尚未完善。自动驾驶的现状是,从数据的感知,到中间的决策,再到最后的执行,越往后反而越成熟。前端的感知,是数据的入口,其实最难。马志刚介绍说,从实践上看,摄像头、雷达其实各有所长。焱融服务的商用车、乘用车客户,大多采用组合式方案,而焱融也更擅长处理混合型数据。
巨额数据成本,企业不得不面对的难题
无论是纯视觉方案,还是视觉+雷达的组合式方案,数据都是自动驾驶的灵魂。没有数据建设、数据处理、数据治理,自动驾驶也就无从谈起。
在马志刚看来,数据的建设、数据的闭环处理,其实有一定的门槛。对自动驾驶企业而言,数据量基本都呈指数级膨胀。数据量的增长,使得算法越来越复杂。自动驾驶的研发过程,是一个升级打怪的过程,会越来越难。居高不下的数据管理成本,是企业不得不面对的现实问题。
火山引擎的张路说,对自动驾驶企业来说,目前两块成本最大,一块是数据管理,一块是模型训练。在数据管理方面,自动驾驶企业处理的数据,已达到几十、上百PB的量级,每年消耗上亿的成本。怎么挖掘海量数据的价值,一直是行业的难点。
在模型训练方面,在大模型成熟之前,数据标注也需要配备大量的人力,消耗大量的成本。有一种说法是,对自动驾驶而言,有多少人工,就有多少智能。另一方面,Transformer算法也是未来通用人工智能领域一个绕不开的算法。大模型对GPU的需求十分大,不少自动驾驶公司每年都是上亿的投入在模型训练里边。
张路说,作为字节跳动旗下的云计算公司,火山引擎将在数据处理、模型训练方面提供解决方案,为客户降本增效。
据张路介绍,火山引擎复用了抖音处理非结构化视频的能力,抖音在数据挖掘上沉淀的能力,正好跟自动驾驶行业相匹配。
只有形成商业闭环,Robotaxi才可走下去
在海量数据 + 人工智能算法的基础上,自动驾驶逐渐由梦想变成现实。在国内,多家公司的Robotaxi产品都已上路测试,成为高阶自动驾驶领域关注的焦点。
据火山引擎的张路观察,一些公司前些年十分激进,直接在走L4级自动驾驶的道路,但在商业上无法实现闭环。一些以往做Robotaxi的公司,一直在降级,为了生存不得不去接一些L2、L2+的项目,用这些项目的资金流养活自己。从这些现象可以看出,Robotaxi的路,奇点还没有到。其实,行业其实已经达成共识,通向自动驾驶之路,一定是渐进式的,跳跃式已被论证不可商业化。
焱融的马志刚说,Robotaxi当下的困境,实际引出了另外一个话题,就是乘用车的自动驾驶、商用车的自动哪一个更容易实现。从数据管理的角度看,在干线物流、矿山、港口、园区这些商用场景更容易实现L3、L4级别的自动驾驶。与商用场景相比,乘用车在数据类型、算法上不同,又受到法律法规的限制,一般都在L2级这个水平,正在向L3级发起冲击。
在利氪的文亮看来,自动驾驶必须在某一规则、某一框架、某一场景下才能够实现,Robotaxi是自动驾驶一个运输工具类场景,未来肯定可以落地。当然,作为一个新生事物,商业闭环是一个必须考虑的问题。如果Robotaxi通过技术进步、车路协同,可以解决商业闭环的问题,一定可以走下去。
文亮说,利氪科技主要做线控底盘,首先切入的产品是线控制动。Robotaxi上没有驾驶员,对于安全、冗余、可靠,要求十分高。利氪科技的线控制动产品完全可以满足相关安全、冗余的要求。
走向自动驾驶,汽车芯片是一个短板
谈及自动驾驶,芯片是一个绕不开的话题。长期以来,国内汽车芯片市场由国外大厂主导,国产芯片公司刚刚起步,生存状况艰难。
在利氪的文亮看来,这三年来国内汽车行业一直面临缺芯的问题,国产化替代是芯片的发展趋势。一个芯片是否安全可靠,需要大量的数据、大量的使用方可验证。
焱融的马志刚充分认同文亮的观点。在他看来,芯片是自动驾驶的载体,汽车行业缺芯是一个严峻的问题。就整个自动驾驶产业链而言,有一个木桶效应,芯片便是一个短板,必须要加以解决。要解决缺芯问题,只能对外促成合作,向内谋求自身发力,实现国产化替代。
在火山引擎的张路看来,芯片国产化是一个国家战略,目标就是要做到战略可控。一个好消息是,地平线、黑芝麻智能这些国产芯片早已突围而出,至少在AI芯片方面能有一席之地。在MCU、域控制器方面,国产化的比例也越来越高。芯片国产化的路虽然很艰辛,但这的确是一个行业趋势。
张路认为,国产化芯片依旧缺乏一个产业链生态。一个芯片研发出来,必须要有驱动程序、软件、系统方面的配套,必须有主机厂去使用,才有可能生存。这其实是一个巨大的挑战。
未来出行,城市大脑实现统一调度
在大算力、大数据、大模型的推动下,全面自动驾驶的时代一定会来临。以始为终地展望,未来的出行市场会出现怎样的形态?
火山引擎的张路认为,在全自动驾驶时代来临之后,汽车可能演变为一个出行服务。要实现这一路径,一定会出现大的运营类的公司去承载这些业务,慢慢形成寡头。自动驾驶与智慧城市结合,一定会产生一个城市大脑,实现交通网的统一调度。
利氪的文亮则认为,即便全自动驾驶时代来临,依旧会分不同的情景、不同的需求。消费者有的情况下需要全无人驾驶,有的情况下则想要体验驾驶的乐趣,人机共驾,也有许多需求。
焱融的马志刚说,如果L5级的全自动驾驶落地,一定会出现类似公共交通的大集中统一协调。当然,在不同的场景下,人有不同的需求,有的场景下需要需要全自动驾驶,有的场景下则需求人工智能辅助驾驶。所以,未来的交通形态一定是综合式解决,既有公共交通全部集中化管理的一面,又有一部分个性化需求得以满足。为了达成这一目标,需要所有上下游的参与者都去发力,才可能实现。
文:Bugle-X / 数据猿
相关文章:

自动驾驶,一次道阻且长的远征|数据猿直播干货分享
数据智能产业创新服务媒体 ——聚焦数智 改变商业 在6月的世界人工智能大会上,马斯克在致辞中宣称,到2023年底,特斯拉便可实现L4级或L5级的完全自动驾驶(FSD)。两个月之后,马斯克又在X社交平台上发言&am…...

大数据培训前景怎么样?企业需求量大吗
大数据行业对大家来说并不陌生,大数据行业市场人才需求量大,越早入行越有优势,发展机会和上升空间等大。不少人通过大数据培训来提升自己的经验和自身技术能力,以此来获得更好的就业机会。 2023大数据培训就业前景怎么样呢?企业需…...

redis — 基于Spring Boot实现redis延迟队列
1. 业务场景 延时队列场景在我们日常业务开发中经常遇到,它是一种特殊类型的消息队列,它允许把消息发送到队列中,但不立即投递给消费者,而是在一定时间后再将消息投递给消费者。延迟队列的常见使用场景有以下几种: 在…...

【日常积累】Linux之init系统学习
init系统简介: Linux 操作系统的启动首先从 BIOS 开始,接下来进入 boot loader,由 bootloader 载入内核,进行内核初始化。内核初始化的最后一步就是启动 pid 为 1 的 init 进程,这个进程是系统的第一个进程,它负责产生…...

Python功能制作之3D方块
介绍 用python写一个黑窗口,窗口里面有一个白色的3D方块,左键按下后移动可以旋转以各个视角来看方块。 当然有需要的话,可以自己在代码中去更改颜色,直接通过RBG的参数进行更改即可。 做了两个函数:init[初始化]和d…...

【0基础入门Python笔记】二、python 之逻辑运算和制流程语句
二、python 之逻辑运算和制流程语句 逻辑运算控制流程语句条件语句(if语句)循环结构(for循环、while循环)continue、break和pass关键字控制流程语句的嵌套以及elif 逻辑运算 Python提供基本的逻辑运算:不仅包括布尔运…...
python中的svm:介绍和基本使用方法
python中的svm:介绍和基本使用方法 支持向量机(Support Vector Machine,简称SVM)是一种常用的分类算法,可以用于解决分类和回归问题。SVM通过构建一个超平面,将不同类别的数据分隔开,使得正负样…...

typedef
t y p e d e f typedef typedef 声明,简称typedef,是创建现有类型的新名字。 比如: #include <bits/stdc.h> using namespace std; typedef long long ll; int main() {ll n;scanf("%lld",&n);printf("%lld"…...

校园跑腿市场行情分析
随着社会的发展和人们生活节奏的加快,校园跑腿市场逐渐兴起并呈现出蓬勃发展的态势。在这个快节奏的时代,越来越多的学生需要在繁忙的学业之外完成各种任务,而校园跑腿服务正是应运而生,为他们提供了便利和时效。本文将从需求方面…...

微服务相关面试题
👏作者简介:大家好,我是爱写博客的嗯哼,爱好Java的小菜坤 🔥如果感觉博主的文章还不错的话,请👍三连支持👍一下博主哦 📝社区论坛:希望大家能加入社区共同进步…...
前端-ES6
let 和 const 为了解决var的作用域的问题,而且var 有变量提升,会出现全局污染的问题 let 块状作用域,并且不能重复声明const 一般用于声明常量,一旦被声明无法修改,但是const 可以声明一个对象,对象内部的…...

169. 多数元素(摩尔投票法) 题解
题目描述:169. 多数元素 - 力扣(LeetCode) 给定一个大小为 n 的数组 nums ,返回其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋ 的元素。 你可以假设数组是非空的,并且给定的数组总是存在多数元素。 示…...
python中的cnn:介绍和基本使用方法
python中的cnn:介绍和基本使用方法 卷积神经网络(Convolutional Neural Networks,简称CNN)是一种在图像识别、语音识别、自然语言处理等许多领域取得显著成功的深度学习模型。CNN的设计灵感来源于生物的视觉系统,由多…...

Dockerfile概念、镜像原理、制作及案例讲解
1.Docker镜像原理 Linux文件操作系统讲解 2.镜像如何制作 3.Dockerfile概念 Docker网址:https://hub.docker.com 3.1 Dockerfile关键字 4.案例...

07-微信小程序-注册页面-模块化
07-微信小程序-注册页面 文章目录 注册页面使用 Page 构造器注册页面参数Object初始数据案例代码 生命周期回调函数组件事件处理函数setData()案例代码 生命周期模块化 注册页面 对于小程序中的每个页面,都需要在页面对应的 js 文件中进行注册,指定页面…...

考研算法第46天: 字符串转换整数 【字符串,模拟】
题目前置知识 c中的string判空 string Count; Count.empty(); //正确 Count ! null; //错误c中最大最小宏 #include <limits.h>INT_MAX INT_MIN 字符串使用发运算将字符加到字符串末尾 string Count; string str "liuda"; Count str[i]; 题目概况 AC代码…...
Cesium for unity 1.5.0使用注意事项
Cesium for Unity Quickstart – Cesium 1.Unity版本仅支持Unity2021.3.2f1以后版 2.仅支持 3D (URP)和3D (HDRP)渲染管线 3.如果Package Manager中不出现My Registries选项,请在 Edit > Project Settings...>Package Manager中重命名或删除重新添加Packag…...

初阶C语言-结构体
🌞 “少年有梦不至于心动,更要付诸行动。” 今天我们一起学习一下结构体的相关内容! 结构体 🎈1.结构体的声明1.1结构的基础知识1.2结构的声明1.3结构成员的类型1.4结构体变量的定义和初始化 🎈2.结构体成员的访问2.1结…...

Android Studio实现解析HTML获取图片URL,将URL存到list,进行瀑布流展示
目录 效果展示build.gradle(app)添加的依赖(用不上的可以不加)AndroidManifest.xml错误代码activity_main.xmlitem_image.xmlMainActivityImage适配器ImageModel 接收图片URL效果展示 build.gradle(app)添加的依赖(用不上的可以不加) dependencies {implementation co…...

java学习004
常用数据结构对应 php中常用的数据结构是Array数组,相对的在java开发中常用的数据结构是ArrayList和HashMap,它们可以看成是array的拆分,一种简单的对应关系为 PHPJAVAArray: array(1,2,3)ArrayListlArray: array(“name” > “jack”,“…...

铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...

Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
JavaScript基础-API 和 Web API
在学习JavaScript的过程中,理解API(应用程序接口)和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能,使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...

抽象类和接口(全)
一、抽象类 1.概念:如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象,这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法,包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中,⼀个类如果被 abs…...