python中的cnn:介绍和基本使用方法
python中的cnn:介绍和基本使用方法
卷积神经网络(Convolutional Neural Networks,简称CNN)是一种在图像识别、语音识别、自然语言处理等许多领域取得显著成功的深度学习模型。CNN的设计灵感来源于生物的视觉系统,由多个卷积层、池化层和全连接层组成。
在Python中,我们通常使用深度学习框架如TensorFlow、Keras或PyTorch来实现CNN。这里,我将给出一个简单的使用Keras构建CNN的例子。
首先,确保已经安装了必要的库:
pip install tensorflow keras numpy matplotlib
然后,我们可以使用以下代码创建一个简单的CNN:
import numpy as np
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
from keras.datasets import mnist
from keras.utils import to_categorical# 加载MNIST数据集
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()# 数据预处理
train_images = train_images / 255.0
test_images = test_images / 255.0
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)# 创建CNN模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation='softmax')) # 对于10个类别的分类问题# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])# 训练模型
model.fit(train_images, train_labels, epochs=5, batch_size=64)# 在测试集上评估模型
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)
这个例子展示了如何使用Keras构建一个简单的CNN来对MNIST数据集进行分类。首先,我们加载数据并对图像数据进行归一化处理。然后,我们创建一个Sequential模型,并依次添加卷积层、池化层和全连接层。最后,我们编译模型,使用训练数据对模型进行训练,并在测试数据上评估模型的性能。
相关文章:
python中的cnn:介绍和基本使用方法
python中的cnn:介绍和基本使用方法 卷积神经网络(Convolutional Neural Networks,简称CNN)是一种在图像识别、语音识别、自然语言处理等许多领域取得显著成功的深度学习模型。CNN的设计灵感来源于生物的视觉系统,由多…...
Dockerfile概念、镜像原理、制作及案例讲解
1.Docker镜像原理 Linux文件操作系统讲解 2.镜像如何制作 3.Dockerfile概念 Docker网址:https://hub.docker.com 3.1 Dockerfile关键字 4.案例...
07-微信小程序-注册页面-模块化
07-微信小程序-注册页面 文章目录 注册页面使用 Page 构造器注册页面参数Object初始数据案例代码 生命周期回调函数组件事件处理函数setData()案例代码 生命周期模块化 注册页面 对于小程序中的每个页面,都需要在页面对应的 js 文件中进行注册,指定页面…...
考研算法第46天: 字符串转换整数 【字符串,模拟】
题目前置知识 c中的string判空 string Count; Count.empty(); //正确 Count ! null; //错误c中最大最小宏 #include <limits.h>INT_MAX INT_MIN 字符串使用发运算将字符加到字符串末尾 string Count; string str "liuda"; Count str[i]; 题目概况 AC代码…...
Cesium for unity 1.5.0使用注意事项
Cesium for Unity Quickstart – Cesium 1.Unity版本仅支持Unity2021.3.2f1以后版 2.仅支持 3D (URP)和3D (HDRP)渲染管线 3.如果Package Manager中不出现My Registries选项,请在 Edit > Project Settings...>Package Manager中重命名或删除重新添加Packag…...
初阶C语言-结构体
🌞 “少年有梦不至于心动,更要付诸行动。” 今天我们一起学习一下结构体的相关内容! 结构体 🎈1.结构体的声明1.1结构的基础知识1.2结构的声明1.3结构成员的类型1.4结构体变量的定义和初始化 🎈2.结构体成员的访问2.1结…...
Android Studio实现解析HTML获取图片URL,将URL存到list,进行瀑布流展示
目录 效果展示build.gradle(app)添加的依赖(用不上的可以不加)AndroidManifest.xml错误代码activity_main.xmlitem_image.xmlMainActivityImage适配器ImageModel 接收图片URL效果展示 build.gradle(app)添加的依赖(用不上的可以不加) dependencies {implementation co…...
java学习004
常用数据结构对应 php中常用的数据结构是Array数组,相对的在java开发中常用的数据结构是ArrayList和HashMap,它们可以看成是array的拆分,一种简单的对应关系为 PHPJAVAArray: array(1,2,3)ArrayListlArray: array(“name” > “jack”,“…...
Linux网络编程:网络基础
文章目录: 1.协议 2.锁 3.网络层次模型 4.以太网帧和ARP协议 5.IP协议 6.UDP协议 7.TCP协议 8.BS模式和CS模式 9.网络套接字(socket) 10.网络字节序 11.IP地址转换函数 12.sockaddr地址结构 学习Linux的网络编程原则上基于:Linux的系统编程…...
3D沉浸式旅游网站开发案例复盘【Three.js】
Plongez dans Lyon网站终于上线了。 我们与 Danka 团队和 Nico Icecream 共同努力,打造了一个令我们特别自豪的流畅的沉浸式网站。 这个网站是专为 ONLYON Tourism 和会议而建,旨在展示里昂最具标志性的活动场所。观看简短的介绍视频后,用户…...
IO的几个模型
I/O模型名词介绍 说到I/O模型,都会牵扯到同步、异步、阻塞、非阻塞这几个词,以下讲解这几个词的概念。 阻塞和非阻塞 阻塞和非阻塞指的是一直等还是可以去做其他事。 阻塞(blocking):调用结果返回之前,…...
中路对线发现正在攻防演练中投毒的红队大佬
背景 2023年8月14日晚,墨菲安全实验室发布《首起针对国内金融企业的开源组件投毒攻击事件》NPM投毒事件分析文章,紧接着我们在8月17日监控到一个新的npm投毒组件包 hreport-preview,该投毒组件用来下载木马文件的域名地址竟然是 img.murphys…...
【LINUX相关】生成随机数(srand、/dev/random 和 /dev/urandom )
目录 一、问题背景二、修改方法2.1 修改种子2.2 使用linux中的 /dev/urandom 生成随机数 三、/dev/random 和 /dev/urandom 的原理3.1 参考连接3.2 重难点总结3.2.1 生成随机数的原理3.2.2 随机数生成器的结构3.2.3 二者的区别和选择 四、在代码的使用方法 一、问题背景 在一个…...
spark使用心得
spark入门 启停spark sbin/start-all.shsbin/stop-all.shspark-shell 进入spark/bin目录,执行: ./spark-shell 输出中有这么一行: Spark context Web UI available at http://xx.xx.xx.188:4040意味着我们可以从web页面查看spark的运行情…...
什么是边车
名词和概念定义 Sidecar:边车。微服务中数据平面的进程,负责转发应用、服务请求,并支持限流、熔断、负载均衡等特性。 Control-plane: 控制平面。微服务的配置中心,负责配置下发、数据搜集、服务发现等功能。 应用: 应用是指服务…...
vue项目打包成exe文件
1. 获取electron-quick-start demo git clone https://github.com/electron/electron-quick-start2. 安装依赖包 npm install 或 npm i // 安装依赖时可能会遇到node版本的问题,需要切换node版本的可以先看下nvm,简单易操作3. 打包项目(需要…...
基于MFCC特征提取和GMM训练的语音信号识别matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 MFCC特征提取 4.2 Gaussian Mixture Model(GMM) 4.3. 实现过程 4.4 应用领域 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3…...
client-go实战之十二:选主(leader-election)
欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本文是《client-go实战》系列的第十二篇,又有一个精彩的知识点在本章呈现:选主(leader-election)在解释什么是选主之前&…...
2023年即将推出的CSS特性对你影响大不大?
Google开发者大会每年都会提出有关于 Web UI 和 CSS 方面的新特性,今年又上新了许多新功能,今天就从中找出了影响最大的几个功能给大家介绍一下 :has :has() 可以通过检查父元素是否包含特定子元素或这些子元素是否处于特定状态来改变样式,也…...
opencv实战项目-停车位计数
手势识别系列文章目录 手势识别是一种人机交互技术,通过识别人的手势动作,从而实现对计算机、智能手机、智能电视等设备的操作和控制。 1. opencv实现手部追踪(定位手部关键点) 2.opencv实战项目 实现手势跟踪并返回位置信息&a…...
渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...
上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式
简介 在我的 QT/C 开发工作中,合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式:工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...
Sklearn 机器学习 缺失值处理 获取填充失值的统计值
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...
Python环境安装与虚拟环境配置详解
本文档旨在为Python开发者提供一站式的环境安装与虚拟环境配置指南,适用于Windows、macOS和Linux系统。无论你是初学者还是有经验的开发者,都能在此找到适合自己的环境搭建方法和常见问题的解决方案。 快速开始 一分钟快速安装与虚拟环境配置 # macOS/…...
Redis上篇--知识点总结
Redis上篇–解析 本文大部分知识整理自网上,在正文结束后都会附上参考地址。如果想要深入或者详细学习可以通过文末链接跳转学习。 1. 基本介绍 Redis 是一个开源的、高性能的 内存键值数据库,Redis 的键值对中的 key 就是字符串对象,而 val…...
Yii2项目自动向GitLab上报Bug
Yii2 项目自动上报Bug 原理 yii2在程序报错时, 会执行指定action, 通过重写ErrorAction, 实现Bug自动提交至GitLab的issue 步骤 配置SiteController中的actions方法 public function actions(){return [error > [class > app\helpers\web\ErrorAction,],];}重写Error…...
