当前位置: 首页 > news >正文

python中的cnn:介绍和基本使用方法

python中的cnn:介绍和基本使用方法

卷积神经网络(Convolutional Neural Networks,简称CNN)是一种在图像识别、语音识别、自然语言处理等许多领域取得显著成功的深度学习模型。CNN的设计灵感来源于生物的视觉系统,由多个卷积层、池化层和全连接层组成。

在Python中,我们通常使用深度学习框架如TensorFlow、Keras或PyTorch来实现CNN。这里,我将给出一个简单的使用Keras构建CNN的例子。

首先,确保已经安装了必要的库:

pip install tensorflow keras numpy matplotlib
然后,我们可以使用以下代码创建一个简单的CNN:

import numpy as np
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
from keras.datasets import mnist
from keras.utils import to_categorical# 加载MNIST数据集
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()# 数据预处理
train_images = train_images / 255.0
test_images = test_images / 255.0
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)# 创建CNN模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation='softmax'))  # 对于10个类别的分类问题# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])# 训练模型
model.fit(train_images, train_labels, epochs=5, batch_size=64)# 在测试集上评估模型
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)

这个例子展示了如何使用Keras构建一个简单的CNN来对MNIST数据集进行分类。首先,我们加载数据并对图像数据进行归一化处理。然后,我们创建一个Sequential模型,并依次添加卷积层、池化层和全连接层。最后,我们编译模型,使用训练数据对模型进行训练,并在测试数据上评估模型的性能。

相关文章:

python中的cnn:介绍和基本使用方法

python中的cnn:介绍和基本使用方法 卷积神经网络(Convolutional Neural Networks,简称CNN)是一种在图像识别、语音识别、自然语言处理等许多领域取得显著成功的深度学习模型。CNN的设计灵感来源于生物的视觉系统,由多…...

Dockerfile概念、镜像原理、制作及案例讲解

1.Docker镜像原理 Linux文件操作系统讲解 2.镜像如何制作 3.Dockerfile概念 Docker网址:https://hub.docker.com 3.1 Dockerfile关键字 4.案例...

07-微信小程序-注册页面-模块化

07-微信小程序-注册页面 文章目录 注册页面使用 Page 构造器注册页面参数Object初始数据案例代码 生命周期回调函数组件事件处理函数setData()案例代码 生命周期模块化 注册页面 对于小程序中的每个页面,都需要在页面对应的 js 文件中进行注册,指定页面…...

考研算法第46天: 字符串转换整数 【字符串,模拟】

题目前置知识 c中的string判空 string Count; Count.empty(); //正确 Count ! null; //错误c中最大最小宏 #include <limits.h>INT_MAX INT_MIN 字符串使用发运算将字符加到字符串末尾 string Count; string str "liuda"; Count str[i]; 题目概况 AC代码…...

Cesium for unity 1.5.0使用注意事项

Cesium for Unity Quickstart – Cesium 1.Unity版本仅支持Unity2021.3.2f1以后版 2.仅支持 3D (URP)和3D (HDRP)渲染管线 3.如果Package Manager中不出现My Registries选项&#xff0c;请在 Edit > Project Settings...>Package Manager中重命名或删除重新添加Packag…...

初阶C语言-结构体

&#x1f31e; “少年有梦不至于心动&#xff0c;更要付诸行动。” 今天我们一起学习一下结构体的相关内容&#xff01; 结构体 &#x1f388;1.结构体的声明1.1结构的基础知识1.2结构的声明1.3结构成员的类型1.4结构体变量的定义和初始化 &#x1f388;2.结构体成员的访问2.1结…...

Android Studio实现解析HTML获取图片URL,将URL存到list,进行瀑布流展示

目录 效果展示build.gradle(app)添加的依赖(用不上的可以不加)AndroidManifest.xml错误代码activity_main.xmlitem_image.xmlMainActivityImage适配器ImageModel 接收图片URL效果展示 build.gradle(app)添加的依赖(用不上的可以不加) dependencies {implementation co…...

java学习004

常用数据结构对应 php中常用的数据结构是Array数组&#xff0c;相对的在java开发中常用的数据结构是ArrayList和HashMap&#xff0c;它们可以看成是array的拆分&#xff0c;一种简单的对应关系为 PHPJAVAArray: array(1,2,3)ArrayListlArray: array(“name” > “jack”,“…...

Linux网络编程:网络基础

文章目录&#xff1a; 1.协议 2.锁 3.网络层次模型 4.以太网帧和ARP协议 5.IP协议 6.UDP协议 7.TCP协议 8.BS模式和CS模式 9.网络套接字(socket) 10.网络字节序 11.IP地址转换函数 12.sockaddr地址结构 学习Linux的网络编程原则上基于&#xff1a;Linux的系统编程…...

3D沉浸式旅游网站开发案例复盘【Three.js】

Plongez dans Lyon网站终于上线了。 我们与 Danka 团队和 Nico Icecream 共同努力&#xff0c;打造了一个令我们特别自豪的流畅的沉浸式网站。 这个网站是专为 ONLYON Tourism 和会议而建&#xff0c;旨在展示里昂最具标志性的活动场所。观看简短的介绍视频后&#xff0c;用户…...

IO的几个模型

I/O模型名词介绍 说到I/O模型&#xff0c;都会牵扯到同步、异步、阻塞、非阻塞这几个词&#xff0c;以下讲解这几个词的概念。 阻塞和非阻塞 阻塞和非阻塞指的是一直等还是可以去做其他事。 阻塞&#xff08;blocking&#xff09;&#xff1a;调用结果返回之前&#xff0c;…...

中路对线发现正在攻防演练中投毒的红队大佬

背景 2023年8月14日晚&#xff0c;墨菲安全实验室发布《首起针对国内金融企业的开源组件投毒攻击事件》NPM投毒事件分析文章&#xff0c;紧接着我们在8月17日监控到一个新的npm投毒组件包 hreport-preview&#xff0c;该投毒组件用来下载木马文件的域名地址竟然是 img.murphys…...

【LINUX相关】生成随机数(srand、/dev/random 和 /dev/urandom )

目录 一、问题背景二、修改方法2.1 修改种子2.2 使用linux中的 /dev/urandom 生成随机数 三、/dev/random 和 /dev/urandom 的原理3.1 参考连接3.2 重难点总结3.2.1 生成随机数的原理3.2.2 随机数生成器的结构3.2.3 二者的区别和选择 四、在代码的使用方法 一、问题背景 在一个…...

spark使用心得

spark入门 启停spark sbin/start-all.shsbin/stop-all.shspark-shell 进入spark/bin目录&#xff0c;执行&#xff1a; ./spark-shell 输出中有这么一行&#xff1a; Spark context Web UI available at http://xx.xx.xx.188:4040意味着我们可以从web页面查看spark的运行情…...

什么是边车

名词和概念定义 Sidecar&#xff1a;边车。微服务中数据平面的进程&#xff0c;负责转发应用、服务请求&#xff0c;并支持限流、熔断、负载均衡等特性。 Control-plane: 控制平面。微服务的配置中心&#xff0c;负责配置下发、数据搜集、服务发现等功能。 应用: 应用是指服务…...

vue项目打包成exe文件

1. 获取electron-quick-start demo git clone https://github.com/electron/electron-quick-start2. 安装依赖包 npm install 或 npm i // 安装依赖时可能会遇到node版本的问题&#xff0c;需要切换node版本的可以先看下nvm&#xff0c;简单易操作3. 打包项目&#xff08;需要…...

基于MFCC特征提取和GMM训练的语音信号识别matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 MFCC特征提取 4.2 Gaussian Mixture Model&#xff08;GMM&#xff09; 4.3. 实现过程 4.4 应用领域 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3…...

client-go实战之十二:选主(leader-election)

欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码)&#xff1a;https://github.com/zq2599/blog_demos 本篇概览 本文是《client-go实战》系列的第十二篇&#xff0c;又有一个精彩的知识点在本章呈现&#xff1a;选主(leader-election)在解释什么是选主之前&…...

2023年即将推出的CSS特性对你影响大不大?

Google开发者大会每年都会提出有关于 Web UI 和 CSS 方面的新特性&#xff0c;今年又上新了许多新功能&#xff0c;今天就从中找出了影响最大的几个功能给大家介绍一下 :has :has() 可以通过检查父元素是否包含特定子元素或这些子元素是否处于特定状态来改变样式&#xff0c;也…...

opencv实战项目-停车位计数

手势识别系列文章目录 手势识别是一种人机交互技术&#xff0c;通过识别人的手势动作&#xff0c;从而实现对计算机、智能手机、智能电视等设备的操作和控制。 1. opencv实现手部追踪&#xff08;定位手部关键点&#xff09; 2.opencv实战项目 实现手势跟踪并返回位置信息&a…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...

Python Einops库:深度学习中的张量操作革命

Einops&#xff08;爱因斯坦操作库&#xff09;就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库&#xff0c;用类似自然语言的表达式替代了晦涩的API调用&#xff0c;彻底改变了深度学习工程…...