基于MFCC特征提取和GMM训练的语音信号识别matlab仿真
目录
1.算法运行效果图预览
2.算法运行软件版本
3.部分核心程序
4.算法理论概述
4.1 MFCC特征提取
4.2 Gaussian Mixture Model(GMM)
4.3. 实现过程
4.4 应用领域
5.算法完整程序工程
1.算法运行效果图预览

2.算法运行软件版本
matlab2022a
3.部分核心程序
...........................................................................
Num_Gauss = 64;
%读取训练数据
[Speech_Train10,Fs] = audioread('Train_Samples\yes_no\yes3.wav');
[Speech_Train20,Fs] = audioread('Train_Samples\yes_no\no3.wav');
%endpoint
Index_use = func_cut(Speech_Train10,Fs,0);
Speech_Train1 = Speech_Train10(Index_use(1):Index_use(2));
Index_use = func_cut(Speech_Train20,Fs,0);
Speech_Train2 = Speech_Train20(Index_use(1):Index_use(2));
%预加重
%Step 1: pre-emphasis
Speech_Train1 = filter([1, -0.95], 1, Speech_Train1);
%Step 1: pre-emphasis
Speech_Train2 = filter([1, -0.95], 1, Speech_Train2);%MFCC提取
global Show_Wind;
Show_Wind = 0;
global Show_FFT;
Show_FFT = 0;Train_features1=melcepst(Speech_Train1,Fs);
Train_features2=melcepst(Speech_Train2,Fs);%GMM训练
[mu_train1,sigma_train1,c_train1]=fun_GMM_EM(Train_features1',Num_Gauss);
[mu_train2,sigma_train2,c_train2]=fun_GMM_EM(Train_features2',Num_Gauss);mu_train{1} = mu_train1;
mu_train{2} = mu_train2;
sigma_train{1} = sigma_train1;
sigma_train{2} = sigma_train2;
c_train{1} = c_train1;
c_train{2} = c_train2;save GMM_MFCC3.mat mu_train sigma_train c_train Train_features1 Train_features2
03_009m
4.算法理论概述
语音信号识别是将输入的语音信号映射到对应的文本或语音标签的过程。基于MFCC(Mel-Frequency Cepstral Coefficients)特征提取和GMM(Gaussian Mixture Model)训练的方法在语音识别领域取得了显著的成果。
4.1 MFCC特征提取
MFCC是一种广泛用于语音信号处理的特征提取方法,它模拟了人类听觉系统对声音的感知。其主要步骤如下:
预加重: 原始语音信号经过预加重以平衡频谱。

分帧: 将信号分成短帧,通常为20-40毫秒。将预加重的语音信号分割成短帧,并对每帧应用窗函数,通常使用汉明窗或汉宁窗等。
加窗: 对每帧应用窗函数,以减少频谱泄漏。
快速傅里叶变换(FFT): 计算每帧的频谱。

Mel滤波器组: 将线性频谱转换为Mel频率刻度,以模拟人耳的感知。梅尔频率与实际频率的关系如下:

离散余弦变换(DCT): 将Mel频谱转换为倒谱系数,保留重要信息。
最终,得到的MFCC系数可以被视为每个帧的特征向量,用于进一步的语音信号分析、识别等任务。请注意,上述公式仅为MFCC特征提取的基本步骤,实际实现中可能会有一些微调和优化。
4.2 Gaussian Mixture Model(GMM)
GMM是一种用于建模概率分布的方法,常用于对语音特征进行建模。在语音信号识别中,每个语音类别(音素、词汇等)都可以由一个GMM来表示。GMM由多个高斯分布组成,用于描述特征空间中的数据分布。训练GMM的过程涉及以下步骤:
初始化: 随机初始化各个高斯分布的参数,如均值和协方差矩阵。
期望最大化(EM)算法: 迭代优化步骤,包括E步(计算后验概率)和M步(更新高斯分布参数)。
模型选择: 通过交叉验证等方法选择适当数量的高斯分布,以避免过拟合。
4.3. 实现过程
基于MFCC特征提取和GMM训练的语音信号识别过程包括以下步骤:
数据准备: 收集并整理语音数据集,其中包含录制的语音样本和相应的标签。
MFCC特征提取: 对每个语音样本应用MFCC特征提取过程,得到MFCC系数。
GMM训练: 对每个语音类别(音素、词汇等)分别训练一个GMM模型,使用EM算法优化模型参数。
解码: 给定一个未知语音样本,计算其MFCC特征并与各个GMM模型进行比较,选择概率最高的模型作为预测结果。
4.4 应用领域
基于MFCC特征提取和GMM训练的语音信号识别方法在以下领域得到应用:语音识别系统: 用于将说话人的语音转换为文本,支持语音助手、语音搜索等应用。说话人识别: 用于辨别不同说话人的声音,有助于语音安全认证和个性化服务。情感分析: 通过分析声音的特征,识别语音中蕴含的情感信息,如愉悦、紧张等。
5.算法完整程序工程
OOOOO
OOO
O
相关文章:
基于MFCC特征提取和GMM训练的语音信号识别matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 MFCC特征提取 4.2 Gaussian Mixture Model(GMM) 4.3. 实现过程 4.4 应用领域 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3…...
client-go实战之十二:选主(leader-election)
欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本文是《client-go实战》系列的第十二篇,又有一个精彩的知识点在本章呈现:选主(leader-election)在解释什么是选主之前&…...
2023年即将推出的CSS特性对你影响大不大?
Google开发者大会每年都会提出有关于 Web UI 和 CSS 方面的新特性,今年又上新了许多新功能,今天就从中找出了影响最大的几个功能给大家介绍一下 :has :has() 可以通过检查父元素是否包含特定子元素或这些子元素是否处于特定状态来改变样式,也…...
opencv实战项目-停车位计数
手势识别系列文章目录 手势识别是一种人机交互技术,通过识别人的手势动作,从而实现对计算机、智能手机、智能电视等设备的操作和控制。 1. opencv实现手部追踪(定位手部关键点) 2.opencv实战项目 实现手势跟踪并返回位置信息&a…...
NLP文本匹配任务Text Matching [无监督训练]:SimCSE、ESimCSE、DiffCSE 项目实践
NLP文本匹配任务Text Matching [无监督训练]:SimCSE、ESimCSE、DiffCSE 项目实践 文本匹配多用于计算两个文本之间的相似度,该示例会基于 ESimCSE 实现一个无监督的文本匹配模型的训练流程。文本匹配多用于计算两段「自然文本」之间的「相似度」。 例如…...
复习vue3,简简单单记录
这里的知识是结合视频以及其他文章一起学习,仅用于个人复习记录 ref 和reactive ref 用于基本类型 reactive 用于引用类型 如果使用ref 传递对象,修改值时候需要写为obj.value.attr 方式修改属性值 如果使用reactive 处理对象,直接obj.att…...
【自用】云服务器 docker 环境下 HomeAssistant 安装 HACS 教程
一、进入 docker 中的 HomeAssistant 1.查找 HomeAssistant 的 CONTAINER ID 连接上云服务器(宿主机)后,终端内进入 root ,输入: docker ps找到了 docker 的 container ID 2.config HomeAssistant 输入下面的命令&…...
使用dockerfile手动构建JDK11镜像运行容器并校验
Docker官方维护镜像的公共仓库网站 Docker Hub 国内无法访问了,大部分镜像无法下载,准备逐步构建自己的镜像库。【转载aliyun官方-容器镜像服务 ACR】Docker常见问题 阿里云容器镜像服务ACR(Alibaba Cloud Container Registry)是面…...
编程语言学习笔记-架构师和工程师的区别,PHP架构师之路
🏆作者简介,黑夜开发者,全栈领域新星创作者✌,CSDN博客专家,阿里云社区专家博主,2023年6月CSDN上海赛道top4。 🏆数年电商行业从业经验,历任核心研发工程师,项目技术负责…...
Streamlit 讲解专栏(十):数据可视化-图表绘制详解(上)
文章目录 1 前言2 st.line_chart:绘制线状图3 st.area_chart:绘制面积图4 st.bar_chart:绘制柱状图5 st.pyplot:绘制自定义图表6 结语 1 前言 在数据可视化的世界中,绘制清晰、易于理解的图表是非常关键的。Streamlit…...
其他行业跳槽转入计算机领域简单看法
其他行业跳槽转入计算机领域简单看法 本人选择从以下几个方向谈谈自己的想法和观点。 先看一下总体图,下面会详细分析 如何规划才能实现转码 自我评估和目标设定:首先,你需要评估自己的技能和兴趣,确定你希望在计算机领域从事…...
Unity制作一个简单的登入注册页面
1.创建Canvas组件 首先我们创建一个Canvas画布,我们再在Canvas画布底下创建一个空物体,取名为Resgister。把空物体的锚点设置为全屏撑开。 2.我们在Resgister空物体底下创建一个Image组件,改名为bg。我们也把它 的锚点设置为全屏撑开状态。接…...
常用游戏运营指标DAU、LTV及参考范围
文章目录 前言运营指标指标范围参考值留存指标的意义总结 前言 作为游戏人免不了听到 DAU 、UP值、留存 等名词,并且有些名词听起来还很像,特别是一款上线的游戏,这些游戏运营指标是衡量游戏业务绩效和用户参与度的重要数据,想做…...
标准模板库STL——deque和list
deque概述 deque属于顺序容器,称为双端队列容器 底层数据结构是动态二维数组,从整体上看,deque的内存不连续 初始数组第一维数量为2,必要时进行2倍扩容 每次第一维扩容后,原来数组第二维元素从新数组下标为OldSize/2的…...
分类预测 | MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测
分类预测 | MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测 目录 分类预测 | MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测分类效果基本描述模型描述程序设计参考资料 分类效果 基本描述 1.Matlab实现WOA-CNN-BiGRU-Attention多特征分类预测,多特征输入模型&…...
C++ Primer Plus 第6版 读书笔记(10) 第十章 类与对象
第十章 类与对象 在面向对象编程中,类和对象是两个重要的概念。 类(Class)是一种用户自定义的数据类型,用于封装数据和操作。它是对象的模板或蓝图,描述了对象的属性(成员变量)和行为…...
基于C++ 的OpenCV绘制多边形,多边形多条边用不用的颜色绘制
使用基于C的OpenCV库来绘制多边形,并且为多边形的不同边使用不同的颜色,可以按照以下步骤进行操作: 首先,确保你已经安装了OpenCV库并配置好了你的开发环境。 导入必要的头文件: #include <opencv2/opencv.hpp&g…...
(六)、深度学习框架中的算子
1、深度学习框架算子的基本概念 深度学习框架中的算子(operator)是指用于执行各种数学运算和操作的函数或类。这些算子通常被用来构建神经网络的各个层和组件,实现数据的传递、转换和计算。 算子是深度学习模型的基本组成单元,它们…...
Redis实现共享Session
Redis实现共享Session 分布式系统中,sessiong共享有很多的解决方案,其中托管到缓存中应该是最常用的方案之一。 1、引入依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM…...
网络通信原理UDP协议(第五十课)
UDP协议:用户数据包协议,无连接、不可靠,效率高 字段长度描述Source Port2字节标识哪个应用程序发送(发送进程)。Destination Port2字节标识哪个应用程序接收(接收进程)。Length2字节UDP首部加上UDP数据的字节数,最小为8。Checksum2字节覆盖UDP首部和UDP数据,是可…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
算法笔记2
1.字符串拼接最好用StringBuilder,不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...
JS设计模式(4):观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...
基于Java+VUE+MariaDB实现(Web)仿小米商城
仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意:运行前…...
适应性Java用于现代 API:REST、GraphQL 和事件驱动
在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...
永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...
tauri项目,如何在rust端读取电脑环境变量
如果想在前端通过调用来获取环境变量的值,可以通过标准的依赖: std::env::var(name).ok() 想在前端通过调用来获取,可以写一个command函数: #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...
Unity中的transform.up
2025年6月8日,周日下午 在Unity中,transform.up是Transform组件的一个属性,表示游戏对象在世界空间中的“上”方向(Y轴正方向),且会随对象旋转动态变化。以下是关键点解析: 基本定义 transfor…...
