(六)、深度学习框架中的算子
1、深度学习框架算子的基本概念
深度学习框架中的算子(operator)是指用于执行各种数学运算和操作的函数或类。这些算子通常被用来构建神经网络的各个层和组件,实现数据的传递、转换和计算。
算子是深度学习模型的基本组成单元,它们定义了模型的结构和运算流程,包括输入、输出和中间计算。
2、常见的算子
卷积算子(Convolution Operator): 卷积算子是用于图像处理和计算机视觉任务的关键操作。它通过在输入数据上滑动一个卷积核,计算每个位置的加权和,从而提取输入数据的特征。
池化算子(Pooling Operator): 池化算子用于减小输入数据的尺寸,并保留重要特征。最大池化和平均池化是常见的池化操作,它们通过在输入数据的局部区域内选择最大值或平均值来减少数据的维度,从而提高计算效率并降低过拟合。
激活函数算子(Activation Function Operator): 激活函数算子对神经元的输出进行非线性变换,引入网络的非线性能力。常见的激活函数包括 ReLU(修正线性单元)、Sigmoid、Tanh 等,可以改善网络的表达能力,使其能够学习更复杂的关系。
3、算子的组成
1.输入(Input): 输入是算子的数据源,它是一个或多个张量(Tensor)。这些输入张量可能包含特征、权重、偏差等信息,用于执行算子的计算。
2.计算逻辑(Compute Logic): 计算逻辑是算子的核心部分,它定义了算子的数学运算、逻辑操作、变换等操作。计算逻辑决定了算子如何将输入数据转换为输出数据。
3.参数(Parameters): 有些算子具有可学习的参数,如卷积算子的卷积核、全连接层的权重等。这些参数通过训练过程进行学习,使得算子能够自适应数据。
4.输出(Output): 输出是算子的计算结果,也是一个或多个张量。输出张量包含了经过计算逻辑处理后的数据,可以作为下一个算子的输入。
4、算子的张量
算子的张量是指在深度学习框架中用于存储和处理数据的多维数组(或矩阵)。在深度学习中,输入数据、模型参数、中间特征等都可以表示为张量,通过算子对张量进行计算和变换。
张量具有多个维度,维度的数量称为张量的阶(也称为轴或秩)。例如,0阶张量是标量,1阶张量是向量,2阶张量是矩阵,3阶张量是立方体,以此类推。在实际应用中,常见的是4阶张量,用于表示图片或视频数据。
张量不仅仅包含数据,还携带了数据的形状、数据类型以及其他属性。这些属性对于深度学习框架来说非常重要,因为它们决定了如何对张量进行计算和操作。
在深度学习框架中,需要通过合适的数据结构来表示和操作张量。常见的框架如TensorFlow和PyTorch提供了张量对象,可以直接使用框架提供的API创建、初始化、改变形状、切片、运算等。通过这些操作,可以对数据进行前向传播、反向传播和优化等深度学习任务。
总而言之,算子的张量是指在深度学习框架中用于存储和处理数据的多维数组,它是深度学习中重要的数据结构之一,用于表示输入数据、模型参数和中间特征,并在算子之间进行传递和计算。
5、TensorFlow中算子
TensorFlow中算子与核函数的特点:
算子的主要特征:按类划分:按照执行的硬件设备不同可将算子划分为CPU算子、GPU算子
注册灵活:注册方式灵活度高,算子注册时并未指定具体设备
实现方式多样:核心运算可通过核函数或计算库完成
核函数的主要特征:
TensorFlow中全部CUDA核函数全部使用C++实现
核函数中包含第三方计算库中的函数
对CUDA内建变量进行封装
利用共享内存加速内存访问速度
6、TensorFlow中添加自定义Op的方法
![]()
![]()
![]()
相关文章:
(六)、深度学习框架中的算子
1、深度学习框架算子的基本概念 深度学习框架中的算子(operator)是指用于执行各种数学运算和操作的函数或类。这些算子通常被用来构建神经网络的各个层和组件,实现数据的传递、转换和计算。 算子是深度学习模型的基本组成单元,它们…...
Redis实现共享Session
Redis实现共享Session 分布式系统中,sessiong共享有很多的解决方案,其中托管到缓存中应该是最常用的方案之一。 1、引入依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM…...
网络通信原理UDP协议(第五十课)
UDP协议:用户数据包协议,无连接、不可靠,效率高 字段长度描述Source Port2字节标识哪个应用程序发送(发送进程)。Destination Port2字节标识哪个应用程序接收(接收进程)。Length2字节UDP首部加上UDP数据的字节数,最小为8。Checksum2字节覆盖UDP首部和UDP数据,是可…...
43、TCP报文(一)
本节内容开始,我们正式学习TCP协议中具体的一些原理。首先,最重要的内容仍然是这个协议的封装结构和首部格式,因为这里面牵扯到一些环环相扣的知识点,例如ACK、SYN等等,如果这些内容不能很好的理解,那么后续…...
【JavaScript】使用js实现滑块验证码功能与浏览器打印
滑块验证码 效果图: 实现思路: 根据滑块的最左侧点跟最右侧点, 是否在规定的距离内【页面最左侧为原点】,来判断是否通过 html代码: <!DOCTYPE html> <html><head><title>滑动图片验证码&…...
【使用群晖远程链接drive挂载电脑硬盘】
文章目录 前言1.群晖Synology Drive套件的安装1.1 安装Synology Drive套件1.2 设置Synology Drive套件1.3 局域网内电脑测试和使用 2.使用cpolar远程访问内网Synology Drive2.1 Cpolar云端设置2.2 Cpolar本地设置2.3 测试和使用 3. 结语 前言 群晖作为专业的数据存储中心&…...
easyx图形库基础4:贪吃蛇
贪吃蛇 一实现贪吃蛇:1.绘制网格:1.绘制蛇:3.控制蛇的默认移动向右:4.控制蛇的移动方向:5.生成食物6.判断蛇吃到食物并且长大。7.判断游戏结束:8.重置函数: 二整体代码: 一实现贪吃蛇…...
哈夫曼树(赫夫曼树、最优树)详解
目录 哈夫曼树(赫夫曼树、最优树)详解 哈夫曼树相关的几个名词 什么是哈夫曼树 构建哈夫曼树的过程 哈弗曼树中结点结构 构建哈弗曼树的算法实现 哈夫曼树(赫夫曼树、最优树)详解 哈夫曼树相关的几个名词 路径:…...
智慧建筑工地平台,通过信息化技术、物联网、人工智能技术,实现对施工全过程的实时监控、数据分析、智能管理和优化调控
智慧工地是指通过信息化技术、物联网、人工智能技术等手段,对建筑工地进行数字化、智能化、网络化升级,实现对施工全过程的实时监控、数据分析、智能管理和优化调控。智慧工地的建设可以提高工地的安全性、效率性和质量,降低施工成本…...
Springboot 实践(8)springboot集成Oauth2.0授权包,对接spring security接口
此文之前,项目已经添加了数据库DAO服务接口、资源访问目录、以及数据访问的html页面,同时项目集成了spring security,并替换了登录授权页面;但是,系统用户存储代码之中,而且只注册了admin和user两个用户。在…...
OpenCV-Python中的图像处理-GrabCut算法交互式前景提取
OpenCV-Python中的图像处理-GrabCut算法交互式前景提取 Python-OpenCV中的图像处理-GrabCut算法交互式前景提取 Python-OpenCV中的图像处理-GrabCut算法交互式前景提取 cv2.grabCut(img: Mat, mask: typing.Optional[Mat], rect, bgdModel, fgdModel, iterCount, mode…) img…...
leetcode原题 后继者:找出二叉搜索树中指定节点的“下一个”节点
题目: 设计一个算法,找出二叉搜索树中指定节点的“下一个”节点(也即中序后继)。 如果指定节点没有对应的“下一个”节点,则返回null。 示例: 输入: root [2,1,3], p 1 2 / \ 1 3 输出: 2 解题思路…...
pyqt5 QlineEdit 如何设置只能输入数字
在 PyQt(Python中的一个GUI库)中,可以使用QLineEdit小部件的setValidator()方法来限制用户输入的内容。要让QLineEdit只能输入数字,你可以使用QIntValidator或QDoubleValidator。下面是一个示例代码,展示如何设置只能输…...
ubuntu中安装python
最简单方便的是 apt 使用第三方的 ppa 源,然后直接 apt 安装 python3.9 安装 software-properties-common 获取add-apt-repository命令:apt install -y software-properties-common添加第三方的 ppa 源:add-apt-repository ppa:deadsnakes/p…...
LeetCode150道面试经典题-- 快乐数(简单)
1.题目 编写一个算法来判断一个数 n 是不是快乐数。 「快乐数」 定义为: 对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。如果这个过程 结果为 1&am…...
科研论文配图----第一章笔记
第一章笔记 科研论文的绘制基础 科研论文配图的分类与构成 根据呈现方式,科研论文配图可分为线性图、灰度图、照片彩图和综合配图 4 种类型。 其中,线性图是主要和常用的配图类型,也是本书重点介绍的配图类型。 科研论文配图的格式和尺寸 格…...
OpenHarmony Meetup 广州站 OpenHarmony正当时—技术开源
招募令 OpenHarmony Meetup 广州站 火热招募中,等待激情四射的开发者,线下参与OpenHarmonyMeetup线下交流 展示前沿技术、探讨未来可能、让你了解更多专属OpenHarmony的魅力 线下参与,先到先得,仅限20个名额! 报名截止时间8月23日…...
如何使用PHP Smarty模板实现静态页面生成
首先,你需要从Smarty官网下载这个神奇的文件。然后,你需要在你的PHP文件中引入Smarty类。就像这样: require_once(Smarty.class.php);现在,我们要创建一个Smarty实例。这就像打开一个新的文件,只不过这个文件是可以和…...
【 Cocos Creator 项目实战】益智游戏《2048》(附带完整源码工程)
本文乃Siliphen原创,转载请注明出处 目录 游戏介绍 概述 游戏整体流程 游戏框架设计 主要流程控制类 本文项目的代码组织结构 构建游戏世界 数字方块 地图 触摸手势识别 防触摸抖动 判断用户输入的方向 地图 任意大小的地图 初始化地图大小 地图绘制…...
剑指Offer68-II.二叉树的最近公共祖先 C++
1、题目描述 给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...
MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释
以Module Federation 插件详为例,Webpack.config.js它可能的配置和含义如下: 前言 Module Federation 的Webpack.config.js核心配置包括: name filename(定义应用标识) remotes(引用远程模块࿰…...
Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践
在 Kubernetes 集群中,如何在保障应用高可用的同时有效地管理资源,一直是运维人员和开发者关注的重点。随着微服务架构的普及,集群内各个服务的负载波动日趋明显,传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...
云安全与网络安全:核心区别与协同作用解析
在数字化转型的浪潮中,云安全与网络安全作为信息安全的两大支柱,常被混淆但本质不同。本文将从概念、责任分工、技术手段、威胁类型等维度深入解析两者的差异,并探讨它们的协同作用。 一、核心区别 定义与范围 网络安全:聚焦于保…...
Ray框架:分布式AI训练与调参实践
Ray框架:分布式AI训练与调参实践 系统化学习人工智能网站(收藏):https://www.captainbed.cn/flu 文章目录 Ray框架:分布式AI训练与调参实践摘要引言框架架构解析1. 核心组件设计2. 关键技术实现2.1 动态资源调度2.2 …...
STL 2迭代器
文章目录 1.迭代器2.输入迭代器3.输出迭代器1.插入迭代器 4.前向迭代器5.双向迭代器6.随机访问迭代器7.不同容器返回的迭代器类型1.输入 / 输出迭代器2.前向迭代器3.双向迭代器4.随机访问迭代器5.特殊迭代器适配器6.为什么 unordered_set 只提供前向迭代器? 1.迭代器…...
MyBatis-Plus 常用条件构造方法
1.常用条件方法 方法 说明eq等于 ne不等于 <>gt大于 >ge大于等于 >lt小于 <le小于等于 <betweenBETWEEN 值1 AND 值2notBetweenNOT BETWEEN 值1 AND 值2likeLIKE %值%notLikeNOT LIKE %值%likeLeftLIKE %值likeRightLIKE 值%isNull字段 IS NULLisNotNull字段…...


