分类预测 | MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测
分类预测 | MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测
目录
- 分类预测 | MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测
- 分类效果
- 基本描述
- 模型描述
- 程序设计
- 参考资料
分类效果


基本描述
1.Matlab实现WOA-CNN-BiGRU-Attention多特征分类预测,多特征输入模型,运行环境Matlab2023及以上;
2.通过WOA优化算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以测试集精度最高为目标函数;
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;精确度、召回率、精确率、F1分数等评价指标。
4.基于鲸鱼优化算法(WOA)、卷积神经网络(CNN)和双向门控循环单元网络(BiGRU)的数据分类预测程序。
5.适用领域:
适用于各种数据分类场景,如滚动轴承故障、变压器油气故障、电力系统输电线路故障区域、绝缘子、配网、电能质量扰动,等领域的识别、诊断和分类。
使用便捷:
直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。
模型描述
CNN 是一种前馈型神经网络,广泛应用于深度学习领域,主要由卷积层、池化层和全连接层组成,输入特征向量可以为多维向量组,采用局部感知和权值共享的方式。卷积层对原始数据提取特征量,深度挖掘数据的内在联系,池化层能够降低网络复杂度、减少训练参数,全连接层将处理后的数据进行合并,计算分类和回归结果。
GRU是LSTM的一种改进模型,将遗忘门和输入门集成为单一的更新门,同时混合了神经元状态和隐藏状态,可有效地缓解循环神经网络中“梯度消失”的问题,并能够在保持训练效果的同时减少训练参数。
程序设计
- 完整程序和数据获取方式:私信博主回复MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测;
% The Whale Optimization Algorithm
function [Best_Cost,Best_pos,curve]=WOA(pop,Max_iter,lb,ub,dim,fobj)% initialize position vector and score for the leader
Best_pos=zeros(1,dim);
Best_Cost=inf; %change this to -inf for maximization problems%Initialize the positions of search agents
Positions=initialization(pop,dim,ub,lb);curve=zeros(1,Max_iter);t=0;% Loop counter% Main loop
while t<Max_iterfor i=1:size(Positions,1)% Return back the search agents that go beyond the boundaries of the search spaceFlag4ub=Positions(i,:)>ub;Flag4lb=Positions(i,:)<lb;Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;% Calculate objective function for each search agentfitness=fobj(Positions(i,:));% Update the leaderif fitness<Best_Cost % Change this to > for maximization problemBest_Cost=fitness; % Update alphaBest_pos=Positions(i,:);endenda=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)% a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)a2=-1+t*((-1)/Max_iter);% Update the Position of search agents for i=1:size(Positions,1)r1=rand(); % r1 is a random number in [0,1]r2=rand(); % r2 is a random number in [0,1]A=2*a*r1-a; % Eq. (2.3) in the paperC=2*r2; % Eq. (2.4) in the paperb=1; % parameters in Eq. (2.5)l=(a2-1)*rand+1; % parameters in Eq. (2.5)p = rand(); % p in Eq. (2.6)for j=1:size(Positions,2)if p<0.5 if abs(A)>=1rand_leader_index = floor(pop*rand()+1);X_rand = Positions(rand_leader_index, :);D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)Positions(i,j)=X_rand(j)-A*D_X_rand; % Eq. (2.8)elseif abs(A)<1D_Leader=abs(C*Best_pos(j)-Positions(i,j)); % Eq. (2.1)Positions(i,j)=Best_pos(j)-A*D_Leader; % Eq. (2.2)endelseif p>=0.5distance2Leader=abs(Best_pos(j)-Positions(i,j));% Eq. (2.5)Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Best_pos(j);endendendt=t+1;curve(t)=Best_Cost;[t Best_Cost]
end
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:
分类预测 | MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测
分类预测 | MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测 目录 分类预测 | MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测分类效果基本描述模型描述程序设计参考资料 分类效果 基本描述 1.Matlab实现WOA-CNN-BiGRU-Attention多特征分类预测,多特征输入模型&…...
C++ Primer Plus 第6版 读书笔记(10) 第十章 类与对象
第十章 类与对象 在面向对象编程中,类和对象是两个重要的概念。 类(Class)是一种用户自定义的数据类型,用于封装数据和操作。它是对象的模板或蓝图,描述了对象的属性(成员变量)和行为…...
基于C++ 的OpenCV绘制多边形,多边形多条边用不用的颜色绘制
使用基于C的OpenCV库来绘制多边形,并且为多边形的不同边使用不同的颜色,可以按照以下步骤进行操作: 首先,确保你已经安装了OpenCV库并配置好了你的开发环境。 导入必要的头文件: #include <opencv2/opencv.hpp&g…...
(六)、深度学习框架中的算子
1、深度学习框架算子的基本概念 深度学习框架中的算子(operator)是指用于执行各种数学运算和操作的函数或类。这些算子通常被用来构建神经网络的各个层和组件,实现数据的传递、转换和计算。 算子是深度学习模型的基本组成单元,它们…...
Redis实现共享Session
Redis实现共享Session 分布式系统中,sessiong共享有很多的解决方案,其中托管到缓存中应该是最常用的方案之一。 1、引入依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM…...
网络通信原理UDP协议(第五十课)
UDP协议:用户数据包协议,无连接、不可靠,效率高 字段长度描述Source Port2字节标识哪个应用程序发送(发送进程)。Destination Port2字节标识哪个应用程序接收(接收进程)。Length2字节UDP首部加上UDP数据的字节数,最小为8。Checksum2字节覆盖UDP首部和UDP数据,是可…...
43、TCP报文(一)
本节内容开始,我们正式学习TCP协议中具体的一些原理。首先,最重要的内容仍然是这个协议的封装结构和首部格式,因为这里面牵扯到一些环环相扣的知识点,例如ACK、SYN等等,如果这些内容不能很好的理解,那么后续…...
【JavaScript】使用js实现滑块验证码功能与浏览器打印
滑块验证码 效果图: 实现思路: 根据滑块的最左侧点跟最右侧点, 是否在规定的距离内【页面最左侧为原点】,来判断是否通过 html代码: <!DOCTYPE html> <html><head><title>滑动图片验证码&…...
【使用群晖远程链接drive挂载电脑硬盘】
文章目录 前言1.群晖Synology Drive套件的安装1.1 安装Synology Drive套件1.2 设置Synology Drive套件1.3 局域网内电脑测试和使用 2.使用cpolar远程访问内网Synology Drive2.1 Cpolar云端设置2.2 Cpolar本地设置2.3 测试和使用 3. 结语 前言 群晖作为专业的数据存储中心&…...
easyx图形库基础4:贪吃蛇
贪吃蛇 一实现贪吃蛇:1.绘制网格:1.绘制蛇:3.控制蛇的默认移动向右:4.控制蛇的移动方向:5.生成食物6.判断蛇吃到食物并且长大。7.判断游戏结束:8.重置函数: 二整体代码: 一实现贪吃蛇…...
哈夫曼树(赫夫曼树、最优树)详解
目录 哈夫曼树(赫夫曼树、最优树)详解 哈夫曼树相关的几个名词 什么是哈夫曼树 构建哈夫曼树的过程 哈弗曼树中结点结构 构建哈弗曼树的算法实现 哈夫曼树(赫夫曼树、最优树)详解 哈夫曼树相关的几个名词 路径:…...
智慧建筑工地平台,通过信息化技术、物联网、人工智能技术,实现对施工全过程的实时监控、数据分析、智能管理和优化调控
智慧工地是指通过信息化技术、物联网、人工智能技术等手段,对建筑工地进行数字化、智能化、网络化升级,实现对施工全过程的实时监控、数据分析、智能管理和优化调控。智慧工地的建设可以提高工地的安全性、效率性和质量,降低施工成本…...
Springboot 实践(8)springboot集成Oauth2.0授权包,对接spring security接口
此文之前,项目已经添加了数据库DAO服务接口、资源访问目录、以及数据访问的html页面,同时项目集成了spring security,并替换了登录授权页面;但是,系统用户存储代码之中,而且只注册了admin和user两个用户。在…...
OpenCV-Python中的图像处理-GrabCut算法交互式前景提取
OpenCV-Python中的图像处理-GrabCut算法交互式前景提取 Python-OpenCV中的图像处理-GrabCut算法交互式前景提取 Python-OpenCV中的图像处理-GrabCut算法交互式前景提取 cv2.grabCut(img: Mat, mask: typing.Optional[Mat], rect, bgdModel, fgdModel, iterCount, mode…) img…...
leetcode原题 后继者:找出二叉搜索树中指定节点的“下一个”节点
题目: 设计一个算法,找出二叉搜索树中指定节点的“下一个”节点(也即中序后继)。 如果指定节点没有对应的“下一个”节点,则返回null。 示例: 输入: root [2,1,3], p 1 2 / \ 1 3 输出: 2 解题思路…...
pyqt5 QlineEdit 如何设置只能输入数字
在 PyQt(Python中的一个GUI库)中,可以使用QLineEdit小部件的setValidator()方法来限制用户输入的内容。要让QLineEdit只能输入数字,你可以使用QIntValidator或QDoubleValidator。下面是一个示例代码,展示如何设置只能输…...
ubuntu中安装python
最简单方便的是 apt 使用第三方的 ppa 源,然后直接 apt 安装 python3.9 安装 software-properties-common 获取add-apt-repository命令:apt install -y software-properties-common添加第三方的 ppa 源:add-apt-repository ppa:deadsnakes/p…...
LeetCode150道面试经典题-- 快乐数(简单)
1.题目 编写一个算法来判断一个数 n 是不是快乐数。 「快乐数」 定义为: 对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。如果这个过程 结果为 1&am…...
科研论文配图----第一章笔记
第一章笔记 科研论文的绘制基础 科研论文配图的分类与构成 根据呈现方式,科研论文配图可分为线性图、灰度图、照片彩图和综合配图 4 种类型。 其中,线性图是主要和常用的配图类型,也是本书重点介绍的配图类型。 科研论文配图的格式和尺寸 格…...
OpenHarmony Meetup 广州站 OpenHarmony正当时—技术开源
招募令 OpenHarmony Meetup 广州站 火热招募中,等待激情四射的开发者,线下参与OpenHarmonyMeetup线下交流 展示前沿技术、探讨未来可能、让你了解更多专属OpenHarmony的魅力 线下参与,先到先得,仅限20个名额! 报名截止时间8月23日…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)
一、OpenBCI_GUI 项目概述 (一)项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台,其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言,首次接触 OpenBCI 设备时,往…...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...
Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析
Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析 一、第一轮基础概念问题 1. Spring框架的核心容器是什么?它的作用是什么? Spring框架的核心容器是IoC(控制反转)容器。它的主要作用是管理对…...
QT开发技术【ffmpeg + QAudioOutput】音乐播放器
一、 介绍 使用ffmpeg 4.2.2 在数字化浪潮席卷全球的当下,音视频内容犹如璀璨繁星,点亮了人们的生活与工作。从短视频平台上令人捧腹的搞笑视频,到在线课堂中知识渊博的专家授课,再到影视平台上扣人心弦的高清大片,音…...
深入浅出WebGL:在浏览器中解锁3D世界的魔法钥匙
WebGL:在浏览器中解锁3D世界的魔法钥匙 引言:网页的边界正在消失 在数字化浪潮的推动下,网页早已不再是静态信息的展示窗口。如今,我们可以在浏览器中体验逼真的3D游戏、交互式数据可视化、虚拟实验室,甚至沉浸式的V…...
医疗AI模型可解释性编程研究:基于SHAP、LIME与Anchor
1 医疗树模型与可解释人工智能基础 医疗领域的人工智能应用正迅速从理论研究转向临床实践,在这一过程中,模型可解释性已成为确保AI系统被医疗专业人员接受和信任的关键因素。基于树模型的集成算法(如RandomForest、XGBoost、LightGBM)因其卓越的预测性能和相对良好的解释性…...
Win系统权限提升篇UAC绕过DLL劫持未引号路径可控服务全检项目
应用场景: 1、常规某个机器被钓鱼后门攻击后,我们需要做更高权限操作或权限维持等。 2、内网域中某个机器被钓鱼后门攻击后,我们需要对后续内网域做安全测试。 #Win10&11-BypassUAC自动提权-MSF&UACME 为了远程执行目标的exe或者b…...
