当前位置: 首页 > news >正文

分类预测 | MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测

分类预测 | MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测

目录

    • 分类预测 | MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测
      • 分类效果
      • 基本描述
      • 模型描述
      • 程序设计
      • 参考资料

分类效果

3
4

基本描述

1.Matlab实现WOA-CNN-BiGRU-Attention多特征分类预测,多特征输入模型,运行环境Matlab2023及以上;
2.通过WOA优化算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以测试集精度最高为目标函数;
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;精确度、召回率、精确率、F1分数等评价指标。
4.基于鲸鱼优化算法(WOA)、卷积神经网络(CNN)和双向门控循环单元网络(BiGRU)的数据分类预测程序。
5.适用领域:
适用于各种数据分类场景,如滚动轴承故障、变压器油气故障、电力系统输电线路故障区域、绝缘子、配网、电能质量扰动,等领域的识别、诊断和分类。
使用便捷:
直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。

模型描述

CNN 是一种前馈型神经网络,广泛应用于深度学习领域,主要由卷积层、池化层和全连接层组成,输入特征向量可以为多维向量组,采用局部感知和权值共享的方式。卷积层对原始数据提取特征量,深度挖掘数据的内在联系,池化层能够降低网络复杂度、减少训练参数,全连接层将处理后的数据进行合并,计算分类和回归结果。
GRU是LSTM的一种改进模型,将遗忘门和输入门集成为单一的更新门,同时混合了神经元状态和隐藏状态,可有效地缓解循环神经网络中“梯度消失”的问题,并能够在保持训练效果的同时减少训练参数。

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测
% The Whale Optimization Algorithm
function [Best_Cost,Best_pos,curve]=WOA(pop,Max_iter,lb,ub,dim,fobj)% initialize position vector and score for the leader
Best_pos=zeros(1,dim);
Best_Cost=inf; %change this to -inf for maximization problems%Initialize the positions of search agents
Positions=initialization(pop,dim,ub,lb);curve=zeros(1,Max_iter);t=0;% Loop counter% Main loop
while t<Max_iterfor i=1:size(Positions,1)% Return back the search agents that go beyond the boundaries of the search spaceFlag4ub=Positions(i,:)>ub;Flag4lb=Positions(i,:)<lb;Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;% Calculate objective function for each search agentfitness=fobj(Positions(i,:));% Update the leaderif fitness<Best_Cost % Change this to > for maximization problemBest_Cost=fitness; % Update alphaBest_pos=Positions(i,:);endenda=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)% a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)a2=-1+t*((-1)/Max_iter);% Update the Position of search agents for i=1:size(Positions,1)r1=rand(); % r1 is a random number in [0,1]r2=rand(); % r2 is a random number in [0,1]A=2*a*r1-a;  % Eq. (2.3) in the paperC=2*r2;      % Eq. (2.4) in the paperb=1;               %  parameters in Eq. (2.5)l=(a2-1)*rand+1;   %  parameters in Eq. (2.5)p = rand();        % p in Eq. (2.6)for j=1:size(Positions,2)if p<0.5   if abs(A)>=1rand_leader_index = floor(pop*rand()+1);X_rand = Positions(rand_leader_index, :);D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)Positions(i,j)=X_rand(j)-A*D_X_rand;      % Eq. (2.8)elseif abs(A)<1D_Leader=abs(C*Best_pos(j)-Positions(i,j)); % Eq. (2.1)Positions(i,j)=Best_pos(j)-A*D_Leader;      % Eq. (2.2)endelseif p>=0.5distance2Leader=abs(Best_pos(j)-Positions(i,j));% Eq. (2.5)Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Best_pos(j);endendendt=t+1;curve(t)=Best_Cost;[t Best_Cost]
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关文章:

分类预测 | MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测

分类预测 | MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测 目录 分类预测 | MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测分类效果基本描述模型描述程序设计参考资料 分类效果 基本描述 1.Matlab实现WOA-CNN-BiGRU-Attention多特征分类预测&#xff0c;多特征输入模型&…...

C++ Primer Plus 第6版 读书笔记(10) 第十章 类与对象

第十章 类与对象 在面向对象编程中&#xff0c;类和对象是两个重要的概念。 类&#xff08;Class&#xff09;是一种用户自定义的数据类型&#xff0c;用于封装数据和操作。它是对象的模板或蓝图&#xff0c;描述了对象的属性&#xff08;成员变量&#xff09;和行为&#xf…...

基于C++ 的OpenCV绘制多边形,多边形多条边用不用的颜色绘制

使用基于C的OpenCV库来绘制多边形&#xff0c;并且为多边形的不同边使用不同的颜色&#xff0c;可以按照以下步骤进行操作&#xff1a; 首先&#xff0c;确保你已经安装了OpenCV库并配置好了你的开发环境。 导入必要的头文件&#xff1a; #include <opencv2/opencv.hpp&g…...

(六)、深度学习框架中的算子

1、深度学习框架算子的基本概念 深度学习框架中的算子&#xff08;operator&#xff09;是指用于执行各种数学运算和操作的函数或类。这些算子通常被用来构建神经网络的各个层和组件&#xff0c;实现数据的传递、转换和计算。 算子是深度学习模型的基本组成单元&#xff0c;它们…...

Redis实现共享Session

Redis实现共享Session 分布式系统中&#xff0c;sessiong共享有很多的解决方案&#xff0c;其中托管到缓存中应该是最常用的方案之一。 1、引入依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM…...

网络通信原理UDP协议(第五十课)

UDP协议:用户数据包协议,无连接、不可靠,效率高 字段长度描述Source Port2字节标识哪个应用程序发送(发送进程)。Destination Port2字节标识哪个应用程序接收(接收进程)。Length2字节UDP首部加上UDP数据的字节数,最小为8。Checksum2字节覆盖UDP首部和UDP数据,是可…...

43、TCP报文(一)

本节内容开始&#xff0c;我们正式学习TCP协议中具体的一些原理。首先&#xff0c;最重要的内容仍然是这个协议的封装结构和首部格式&#xff0c;因为这里面牵扯到一些环环相扣的知识点&#xff0c;例如ACK、SYN等等&#xff0c;如果这些内容不能很好的理解&#xff0c;那么后续…...

【JavaScript】使用js实现滑块验证码功能与浏览器打印

滑块验证码 效果图&#xff1a; 实现思路&#xff1a; 根据滑块的最左侧点跟最右侧点&#xff0c; 是否在规定的距离内【页面最左侧为原点】&#xff0c;来判断是否通过 html代码&#xff1a; <!DOCTYPE html> <html><head><title>滑动图片验证码&…...

【使用群晖远程链接drive挂载电脑硬盘】

文章目录 前言1.群晖Synology Drive套件的安装1.1 安装Synology Drive套件1.2 设置Synology Drive套件1.3 局域网内电脑测试和使用 2.使用cpolar远程访问内网Synology Drive2.1 Cpolar云端设置2.2 Cpolar本地设置2.3 测试和使用 3. 结语 前言 群晖作为专业的数据存储中心&…...

easyx图形库基础4:贪吃蛇

贪吃蛇 一实现贪吃蛇&#xff1a;1.绘制网格&#xff1a;1.绘制蛇&#xff1a;3.控制蛇的默认移动向右&#xff1a;4.控制蛇的移动方向&#xff1a;5.生成食物6.判断蛇吃到食物并且长大。7.判断游戏结束&#xff1a;8.重置函数&#xff1a; 二整体代码&#xff1a; 一实现贪吃蛇…...

哈夫曼树(赫夫曼树、最优树)详解

目录 哈夫曼树&#xff08;赫夫曼树、最优树&#xff09;详解 哈夫曼树相关的几个名词 什么是哈夫曼树 构建哈夫曼树的过程 哈弗曼树中结点结构 构建哈弗曼树的算法实现 哈夫曼树&#xff08;赫夫曼树、最优树&#xff09;详解 哈夫曼树相关的几个名词 路径&#xff1a;…...

智慧建筑工地平台,通过信息化技术、物联网、人工智能技术,实现对施工全过程的实时监控、数据分析、智能管理和优化调控

智慧工地是指通过信息化技术、物联网、人工智能技术等手段&#xff0c;对建筑工地进行数字化、智能化、网络化升级&#xff0c;实现对施工全过程的实时监控、数据分析、智能管理和优化调控。智慧工地的建设可以提高工地的安全性、效率性和质量&#xff0c;降低施工成本&#xf…...

Springboot 实践(8)springboot集成Oauth2.0授权包,对接spring security接口

此文之前&#xff0c;项目已经添加了数据库DAO服务接口、资源访问目录、以及数据访问的html页面&#xff0c;同时项目集成了spring security&#xff0c;并替换了登录授权页面&#xff1b;但是&#xff0c;系统用户存储代码之中&#xff0c;而且只注册了admin和user两个用户。在…...

OpenCV-Python中的图像处理-GrabCut算法交互式前景提取

OpenCV-Python中的图像处理-GrabCut算法交互式前景提取 Python-OpenCV中的图像处理-GrabCut算法交互式前景提取 Python-OpenCV中的图像处理-GrabCut算法交互式前景提取 cv2.grabCut(img: Mat, mask: typing.Optional[Mat], rect, bgdModel, fgdModel, iterCount, mode…) img…...

leetcode原题 后继者:找出二叉搜索树中指定节点的“下一个”节点

题目&#xff1a; 设计一个算法&#xff0c;找出二叉搜索树中指定节点的“下一个”节点&#xff08;也即中序后继&#xff09;。 如果指定节点没有对应的“下一个”节点&#xff0c;则返回null。 示例&#xff1a; 输入: root [2,1,3], p 1 2 / \ 1 3 输出: 2 解题思路…...

pyqt5 QlineEdit 如何设置只能输入数字

在 PyQt&#xff08;Python中的一个GUI库&#xff09;中&#xff0c;可以使用QLineEdit小部件的setValidator()方法来限制用户输入的内容。要让QLineEdit只能输入数字&#xff0c;你可以使用QIntValidator或QDoubleValidator。下面是一个示例代码&#xff0c;展示如何设置只能输…...

ubuntu中安装python

最简单方便的是 apt 使用第三方的 ppa 源&#xff0c;然后直接 apt 安装 python3.9 安装 software-properties-common 获取add-apt-repository命令&#xff1a;apt install -y software-properties-common添加第三方的 ppa 源&#xff1a;add-apt-repository ppa:deadsnakes/p…...

LeetCode150道面试经典题-- 快乐数(简单)

1.题目 编写一个算法来判断一个数 n 是不是快乐数。 「快乐数」 定义为&#xff1a; 对于一个正整数&#xff0c;每一次将该数替换为它每个位置上的数字的平方和。然后重复这个过程直到这个数变为 1&#xff0c;也可能是 无限循环 但始终变不到 1。如果这个过程 结果为 1&am…...

科研论文配图----第一章笔记

第一章笔记 科研论文的绘制基础 科研论文配图的分类与构成 根据呈现方式&#xff0c;科研论文配图可分为线性图、灰度图、照片彩图和综合配图 4 种类型。 其中&#xff0c;线性图是主要和常用的配图类型&#xff0c;也是本书重点介绍的配图类型。 科研论文配图的格式和尺寸 格…...

OpenHarmony Meetup 广州站 OpenHarmony正当时—技术开源

招募令 OpenHarmony Meetup 广州站 火热招募中&#xff0c;等待激情四射的开发者&#xff0c;线下参与OpenHarmonyMeetup线下交流 展示前沿技术、探讨未来可能、让你了解更多专属OpenHarmony的魅力 线下参与&#xff0c;先到先得,仅限20个名额&#xff01; 报名截止时间8月23日…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec&#xff1f; IPsec VPN 5.1 IPsec传输模式&#xff08;Transport Mode&#xff09; 5.2 IPsec隧道模式&#xff08;Tunne…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...

深入理解Optional:处理空指针异常

1. 使用Optional处理可能为空的集合 在Java开发中&#xff0c;集合判空是一个常见但容易出错的场景。传统方式虽然可行&#xff0c;但存在一些潜在问题&#xff1a; // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...