分类预测 | MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测
分类预测 | MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测
目录
- 分类预测 | MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测
- 分类效果
- 基本描述
- 模型描述
- 程序设计
- 参考资料
分类效果


基本描述
1.Matlab实现WOA-CNN-BiGRU-Attention多特征分类预测,多特征输入模型,运行环境Matlab2023及以上;
2.通过WOA优化算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以测试集精度最高为目标函数;
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;精确度、召回率、精确率、F1分数等评价指标。
4.基于鲸鱼优化算法(WOA)、卷积神经网络(CNN)和双向门控循环单元网络(BiGRU)的数据分类预测程序。
5.适用领域:
适用于各种数据分类场景,如滚动轴承故障、变压器油气故障、电力系统输电线路故障区域、绝缘子、配网、电能质量扰动,等领域的识别、诊断和分类。
使用便捷:
直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。
模型描述
CNN 是一种前馈型神经网络,广泛应用于深度学习领域,主要由卷积层、池化层和全连接层组成,输入特征向量可以为多维向量组,采用局部感知和权值共享的方式。卷积层对原始数据提取特征量,深度挖掘数据的内在联系,池化层能够降低网络复杂度、减少训练参数,全连接层将处理后的数据进行合并,计算分类和回归结果。
GRU是LSTM的一种改进模型,将遗忘门和输入门集成为单一的更新门,同时混合了神经元状态和隐藏状态,可有效地缓解循环神经网络中“梯度消失”的问题,并能够在保持训练效果的同时减少训练参数。
程序设计
- 完整程序和数据获取方式:私信博主回复MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测;
% The Whale Optimization Algorithm
function [Best_Cost,Best_pos,curve]=WOA(pop,Max_iter,lb,ub,dim,fobj)% initialize position vector and score for the leader
Best_pos=zeros(1,dim);
Best_Cost=inf; %change this to -inf for maximization problems%Initialize the positions of search agents
Positions=initialization(pop,dim,ub,lb);curve=zeros(1,Max_iter);t=0;% Loop counter% Main loop
while t<Max_iterfor i=1:size(Positions,1)% Return back the search agents that go beyond the boundaries of the search spaceFlag4ub=Positions(i,:)>ub;Flag4lb=Positions(i,:)<lb;Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;% Calculate objective function for each search agentfitness=fobj(Positions(i,:));% Update the leaderif fitness<Best_Cost % Change this to > for maximization problemBest_Cost=fitness; % Update alphaBest_pos=Positions(i,:);endenda=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)% a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)a2=-1+t*((-1)/Max_iter);% Update the Position of search agents for i=1:size(Positions,1)r1=rand(); % r1 is a random number in [0,1]r2=rand(); % r2 is a random number in [0,1]A=2*a*r1-a; % Eq. (2.3) in the paperC=2*r2; % Eq. (2.4) in the paperb=1; % parameters in Eq. (2.5)l=(a2-1)*rand+1; % parameters in Eq. (2.5)p = rand(); % p in Eq. (2.6)for j=1:size(Positions,2)if p<0.5 if abs(A)>=1rand_leader_index = floor(pop*rand()+1);X_rand = Positions(rand_leader_index, :);D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)Positions(i,j)=X_rand(j)-A*D_X_rand; % Eq. (2.8)elseif abs(A)<1D_Leader=abs(C*Best_pos(j)-Positions(i,j)); % Eq. (2.1)Positions(i,j)=Best_pos(j)-A*D_Leader; % Eq. (2.2)endelseif p>=0.5distance2Leader=abs(Best_pos(j)-Positions(i,j));% Eq. (2.5)Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Best_pos(j);endendendt=t+1;curve(t)=Best_Cost;[t Best_Cost]
end
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:
分类预测 | MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测
分类预测 | MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测 目录 分类预测 | MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测分类效果基本描述模型描述程序设计参考资料 分类效果 基本描述 1.Matlab实现WOA-CNN-BiGRU-Attention多特征分类预测,多特征输入模型&…...
C++ Primer Plus 第6版 读书笔记(10) 第十章 类与对象
第十章 类与对象 在面向对象编程中,类和对象是两个重要的概念。 类(Class)是一种用户自定义的数据类型,用于封装数据和操作。它是对象的模板或蓝图,描述了对象的属性(成员变量)和行为…...
基于C++ 的OpenCV绘制多边形,多边形多条边用不用的颜色绘制
使用基于C的OpenCV库来绘制多边形,并且为多边形的不同边使用不同的颜色,可以按照以下步骤进行操作: 首先,确保你已经安装了OpenCV库并配置好了你的开发环境。 导入必要的头文件: #include <opencv2/opencv.hpp&g…...
(六)、深度学习框架中的算子
1、深度学习框架算子的基本概念 深度学习框架中的算子(operator)是指用于执行各种数学运算和操作的函数或类。这些算子通常被用来构建神经网络的各个层和组件,实现数据的传递、转换和计算。 算子是深度学习模型的基本组成单元,它们…...
Redis实现共享Session
Redis实现共享Session 分布式系统中,sessiong共享有很多的解决方案,其中托管到缓存中应该是最常用的方案之一。 1、引入依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM…...
网络通信原理UDP协议(第五十课)
UDP协议:用户数据包协议,无连接、不可靠,效率高 字段长度描述Source Port2字节标识哪个应用程序发送(发送进程)。Destination Port2字节标识哪个应用程序接收(接收进程)。Length2字节UDP首部加上UDP数据的字节数,最小为8。Checksum2字节覆盖UDP首部和UDP数据,是可…...
43、TCP报文(一)
本节内容开始,我们正式学习TCP协议中具体的一些原理。首先,最重要的内容仍然是这个协议的封装结构和首部格式,因为这里面牵扯到一些环环相扣的知识点,例如ACK、SYN等等,如果这些内容不能很好的理解,那么后续…...
【JavaScript】使用js实现滑块验证码功能与浏览器打印
滑块验证码 效果图: 实现思路: 根据滑块的最左侧点跟最右侧点, 是否在规定的距离内【页面最左侧为原点】,来判断是否通过 html代码: <!DOCTYPE html> <html><head><title>滑动图片验证码&…...
【使用群晖远程链接drive挂载电脑硬盘】
文章目录 前言1.群晖Synology Drive套件的安装1.1 安装Synology Drive套件1.2 设置Synology Drive套件1.3 局域网内电脑测试和使用 2.使用cpolar远程访问内网Synology Drive2.1 Cpolar云端设置2.2 Cpolar本地设置2.3 测试和使用 3. 结语 前言 群晖作为专业的数据存储中心&…...
easyx图形库基础4:贪吃蛇
贪吃蛇 一实现贪吃蛇:1.绘制网格:1.绘制蛇:3.控制蛇的默认移动向右:4.控制蛇的移动方向:5.生成食物6.判断蛇吃到食物并且长大。7.判断游戏结束:8.重置函数: 二整体代码: 一实现贪吃蛇…...
哈夫曼树(赫夫曼树、最优树)详解
目录 哈夫曼树(赫夫曼树、最优树)详解 哈夫曼树相关的几个名词 什么是哈夫曼树 构建哈夫曼树的过程 哈弗曼树中结点结构 构建哈弗曼树的算法实现 哈夫曼树(赫夫曼树、最优树)详解 哈夫曼树相关的几个名词 路径:…...
智慧建筑工地平台,通过信息化技术、物联网、人工智能技术,实现对施工全过程的实时监控、数据分析、智能管理和优化调控
智慧工地是指通过信息化技术、物联网、人工智能技术等手段,对建筑工地进行数字化、智能化、网络化升级,实现对施工全过程的实时监控、数据分析、智能管理和优化调控。智慧工地的建设可以提高工地的安全性、效率性和质量,降低施工成本…...
Springboot 实践(8)springboot集成Oauth2.0授权包,对接spring security接口
此文之前,项目已经添加了数据库DAO服务接口、资源访问目录、以及数据访问的html页面,同时项目集成了spring security,并替换了登录授权页面;但是,系统用户存储代码之中,而且只注册了admin和user两个用户。在…...
OpenCV-Python中的图像处理-GrabCut算法交互式前景提取
OpenCV-Python中的图像处理-GrabCut算法交互式前景提取 Python-OpenCV中的图像处理-GrabCut算法交互式前景提取 Python-OpenCV中的图像处理-GrabCut算法交互式前景提取 cv2.grabCut(img: Mat, mask: typing.Optional[Mat], rect, bgdModel, fgdModel, iterCount, mode…) img…...
leetcode原题 后继者:找出二叉搜索树中指定节点的“下一个”节点
题目: 设计一个算法,找出二叉搜索树中指定节点的“下一个”节点(也即中序后继)。 如果指定节点没有对应的“下一个”节点,则返回null。 示例: 输入: root [2,1,3], p 1 2 / \ 1 3 输出: 2 解题思路…...
pyqt5 QlineEdit 如何设置只能输入数字
在 PyQt(Python中的一个GUI库)中,可以使用QLineEdit小部件的setValidator()方法来限制用户输入的内容。要让QLineEdit只能输入数字,你可以使用QIntValidator或QDoubleValidator。下面是一个示例代码,展示如何设置只能输…...
ubuntu中安装python
最简单方便的是 apt 使用第三方的 ppa 源,然后直接 apt 安装 python3.9 安装 software-properties-common 获取add-apt-repository命令:apt install -y software-properties-common添加第三方的 ppa 源:add-apt-repository ppa:deadsnakes/p…...
LeetCode150道面试经典题-- 快乐数(简单)
1.题目 编写一个算法来判断一个数 n 是不是快乐数。 「快乐数」 定义为: 对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。如果这个过程 结果为 1&am…...
科研论文配图----第一章笔记
第一章笔记 科研论文的绘制基础 科研论文配图的分类与构成 根据呈现方式,科研论文配图可分为线性图、灰度图、照片彩图和综合配图 4 种类型。 其中,线性图是主要和常用的配图类型,也是本书重点介绍的配图类型。 科研论文配图的格式和尺寸 格…...
OpenHarmony Meetup 广州站 OpenHarmony正当时—技术开源
招募令 OpenHarmony Meetup 广州站 火热招募中,等待激情四射的开发者,线下参与OpenHarmonyMeetup线下交流 展示前沿技术、探讨未来可能、让你了解更多专属OpenHarmony的魅力 线下参与,先到先得,仅限20个名额! 报名截止时间8月23日…...
VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
中医有效性探讨
文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
深入理解Optional:处理空指针异常
1. 使用Optional处理可能为空的集合 在Java开发中,集合判空是一个常见但容易出错的场景。传统方式虽然可行,但存在一些潜在问题: // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...
