当前位置: 首页 > news >正文

opencv实战项目-停车位计数

手势识别系列文章目录
手势识别是一种人机交互技术,通过识别人的手势动作,从而实现对计算机、智能手机、智能电视等设备的操作和控制。

1.  opencv实现手部追踪(定位手部关键点)

2.opencv实战项目 实现手势跟踪并返回位置信息(封装调用)

3.手势识别-手势音量控制(opencv)

4.opencv实战项目 手势识别-手势控制鼠标

5.opencv实战项目 手势识别-手部距离测量

6.opencv实战项目 手势识别-实现尺寸缩放效果

未完待续
 

目录

1.简介

2.代码思路

 3.代码详解


 

opencv 的图像结果

 

代码需要用到opencv  cvzone模块   pickle模块

1.简介

OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉库,它提供了丰富的图像处理和计算机视觉功能,旨在帮助开发者在各种应用领域中实现图像处理、分析和计算机视觉任务

  1. 功能丰富:OpenCV提供了广泛的图像处理、计算机视觉、机器学习和深度学习功能。这些功能包括图像增强、特征提取、对象检测、人脸识别、图像分割、运动跟踪等。

  2. 跨平台:OpenCV是跨平台的,可以在多种操作系统上运行,包括Windows、Linux、macOS等。

  3. 多语言支持:OpenCV支持多种编程语言,如C++、Python、Java等。这使得开发者可以使用自己熟悉的编程语言来使用OpenCV库。

  4. 高效优化:OpenCV库被优化用于高性能计算。它使用了硬件加速、并行处理和优化算法,以在各种硬件平台上提供高效的计算速度。

  5. 图像和视频处理:OpenCV支持从图像文件和摄像头中读取图像和视频数据。它可以进行图像预处理、过滤、几何变换、颜色空间转换等。

  6. 计算机视觉任务:OpenCV包括各种计算机视觉任务的算法和功能,如物体检测、人脸识别、手势识别、运动跟踪、目标追踪等。

  7. 深度学习集成:OpenCV也集成了一些深度学习框架,如TensorFlow和PyTorch,使得开发者可以结合深度学习模型来执行更复杂的视觉任务。

  8. 开源社区:OpenCV是一个活跃的开源项目,有着庞大的开发者社区。这意味着你可以找到大量的教程、示例代码和解决方案,帮助你解决各种视觉问题。

     

2.代码思路

  1. 视频输入与读取

    • 通过cv2.VideoCapture打开一个视频文件作为输入。
    • 使用cap.read()读取视频的每一帧图像。
  2. 图像预处理

    • 将每一帧图像转换为灰度图像,以简化后续处理。
    • 对灰度图像应用高斯模糊,减少图像中的噪声。
    • 使用自适应阈值方法将图像分割为前景(车辆)和背景(停车位)。
  3. 停车位检测checkParkingSpace函数):

    • 针对预定义的停车位位置(从文件加载得到),在阈值图像中提取每个停车位的区域。
    • 使用cv2.countNonZero计算每个停车位区域内非零(白色)像素的数量。这相当于计算了停车位区域内的白色像素数量,用于判断是否有车辆停放在该位置。
    • 根据计算出的非零像素数量,判断停车位是否空闲。如果非零像素数量低于某个阈值(例如900),则认为停车位为空闲;否则认为停车位被占用。
    • 在原始图像上,使用矩形框和文本标记出停车位的状态,以及区域内非零像素的数量。
  4. 结果显示

    • 在图像上绘制检测结果,使用不同的颜色标记空闲和占用的停车位,以及停车位区域内的像素数量信息。
    • 在图像上绘制空闲停车位的总数量,以及总停车位数量。
  5. 循环处理

    • 循环处理视频的每一帧,重复上述步骤。
    • 如果视频处理完毕,重置视频的位置,以便重新播放视频。

 

 3.代码详解

import cv2
import pickle
import cvzone
import numpy as np# Video feed
cap = cv2.VideoCapture('carPark.mp4')with open('CarParkPos', 'rb') as f:posList = pickle.load(f)width, height = 107, 48def checkParkingSpace(imgPro):spaceCounter = 0for pos in posList:x, y = posimgCrop = imgPro[y:y + height, x:x + width]# cv2.imshow(str(x * y), imgCrop)count = cv2.countNonZero(imgCrop)if count < 900:color = (0, 255, 0)thickness = 5spaceCounter += 1else:color = (0, 0, 255)thickness = 2cv2.rectangle(img, pos, (pos[0] + width, pos[1] + height), color, thickness)cvzone.putTextRect(img, str(count), (x, y + height - 3), scale=1,thickness=2, offset=0, colorR=color)cvzone.putTextRect(img, f'Free: {spaceCounter}/{len(posList)}', (100, 50), scale=3,thickness=5, offset=20, colorR=(0,200,0))
while True:if cap.get(cv2.CAP_PROP_POS_FRAMES) == cap.get(cv2.CAP_PROP_FRAME_COUNT):cap.set(cv2.CAP_PROP_POS_FRAMES, 0)success, img = cap.read()imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)imgBlur = cv2.GaussianBlur(imgGray, (3, 3), 1)imgThreshold = cv2.adaptiveThreshold(imgBlur, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV, 25, 16)imgMedian = cv2.medianBlur(imgThreshold, 5)kernel = np.ones((3, 3), np.uint8)imgDilate = cv2.dilate(imgMedian, kernel, iterations=1)checkParkingSpace(imgDilate)cv2.imshow("Image", img)# cv2.imshow("ImageBlur", imgBlur)# cv2.imshow("ImageThres", imgMedian)cv2.waitKey(10)

代码讲解

  1. 导入所需的库:

    • cv2:OpenCV库,用于图像处理和计算机视觉任务。
    • pickle:用于序列化和反序列化Python对象。
    • cvzone:这是一个基于OpenCV的库,用于在图像上绘制文本和形状。
    • numpy:用于数组操作和数学计算。
  2. 打开视频文件并读取停车位位置信息:

    • cap = cv2.VideoCapture('carPark.mp4'):打开名为'carPark.mp4'的视频文件作为输入。
    • with open('CarParkPos', 'rb') as f::使用二进制模式打开名为'CarParkPos'的文件,其中包含停车位的位置信息。
    • posList = pickle.load(f):从文件中加载停车位位置信息,并将其存储在posList变量中。
  3. 定义一个用于检查停车位空闲情况的函数checkParkingSpace(imgPro)

    • spaceCounter用于计算空闲停车位的数量。
    • 循环遍历每个停车位的位置信息。
    • 从输入图像中提取与当前停车位位置对应的区域,即imgCrop
    • 使用cv2.countNonZero(imgCrop)计算该区域中非零像素的数量(即白色像素数量)。
    • 如果非零像素数量小于900,表示该停车位空闲,将矩形框和文本标记为绿色,计数器增加。
    • 否则,表示停车位已被占用,将矩形框和文本标记为红色。
  4. 进入主循环:

    • 循环用于处理视频帧。
    • 首先检查是否已经到达视频的末尾,如果是,则将视频的位置重置到开头。
    • 使用cap.read()读取视频的下一帧图像。
    • 将图像转换为灰度图像,然后应用高斯模糊、自适应阈值等图像处理步骤,以提取停车位的信息。
    • 调用之前定义的checkParkingSpace()函数,传入经过处理的图像。
    • 在图像上绘制检测结果的矩形框和文本信息。
    • 使用cv2.imshow()显示处理后的图像,并等待用户按键(cv2.waitKey(10))。

视频文件

链接:https://pan.baidu.com/s/1TiNlSBF6I1lHvEr2YIxlBA 
提取码:8vw3

有遇到的问题欢迎评论区留言

相关文章:

opencv实战项目-停车位计数

手势识别系列文章目录 手势识别是一种人机交互技术&#xff0c;通过识别人的手势动作&#xff0c;从而实现对计算机、智能手机、智能电视等设备的操作和控制。 1. opencv实现手部追踪&#xff08;定位手部关键点&#xff09; 2.opencv实战项目 实现手势跟踪并返回位置信息&a…...

NLP文本匹配任务Text Matching [无监督训练]:SimCSE、ESimCSE、DiffCSE 项目实践

NLP文本匹配任务Text Matching [无监督训练]&#xff1a;SimCSE、ESimCSE、DiffCSE 项目实践 文本匹配多用于计算两个文本之间的相似度&#xff0c;该示例会基于 ESimCSE 实现一个无监督的文本匹配模型的训练流程。文本匹配多用于计算两段「自然文本」之间的「相似度」。 例如…...

复习vue3,简简单单记录

这里的知识是结合视频以及其他文章一起学习&#xff0c;仅用于个人复习记录 ref 和reactive ref 用于基本类型 reactive 用于引用类型 如果使用ref 传递对象&#xff0c;修改值时候需要写为obj.value.attr 方式修改属性值 如果使用reactive 处理对象&#xff0c;直接obj.att…...

【自用】云服务器 docker 环境下 HomeAssistant 安装 HACS 教程

一、进入 docker 中的 HomeAssistant 1.查找 HomeAssistant 的 CONTAINER ID 连接上云服务器&#xff08;宿主机&#xff09;后&#xff0c;终端内进入 root &#xff0c;输入&#xff1a; docker ps找到了 docker 的 container ID 2.config HomeAssistant 输入下面的命令&…...

使用dockerfile手动构建JDK11镜像运行容器并校验

Docker官方维护镜像的公共仓库网站 Docker Hub 国内无法访问了&#xff0c;大部分镜像无法下载&#xff0c;准备逐步构建自己的镜像库。【转载aliyun官方-容器镜像服务 ACR】Docker常见问题 阿里云容器镜像服务ACR&#xff08;Alibaba Cloud Container Registry&#xff09;是面…...

编程语言学习笔记-架构师和工程师的区别,PHP架构师之路

&#x1f3c6;作者简介&#xff0c;黑夜开发者&#xff0c;全栈领域新星创作者✌&#xff0c;CSDN博客专家&#xff0c;阿里云社区专家博主&#xff0c;2023年6月CSDN上海赛道top4。 &#x1f3c6;数年电商行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责…...

Streamlit 讲解专栏(十):数据可视化-图表绘制详解(上)

文章目录 1 前言2 st.line_chart&#xff1a;绘制线状图3 st.area_chart&#xff1a;绘制面积图4 st.bar_chart&#xff1a;绘制柱状图5 st.pyplot&#xff1a;绘制自定义图表6 结语 1 前言 在数据可视化的世界中&#xff0c;绘制清晰、易于理解的图表是非常关键的。Streamlit…...

其他行业跳槽转入计算机领域简单看法

其他行业跳槽转入计算机领域简单看法 本人选择从以下几个方向谈谈自己的想法和观点。 先看一下总体图&#xff0c;下面会详细分析 如何规划才能实现转码 自我评估和目标设定&#xff1a;首先&#xff0c;你需要评估自己的技能和兴趣&#xff0c;确定你希望在计算机领域从事…...

Unity制作一个简单的登入注册页面

1.创建Canvas组件 首先我们创建一个Canvas画布&#xff0c;我们再在Canvas画布底下创建一个空物体&#xff0c;取名为Resgister。把空物体的锚点设置为全屏撑开。 2.我们在Resgister空物体底下创建一个Image组件&#xff0c;改名为bg。我们也把它 的锚点设置为全屏撑开状态。接…...

常用游戏运营指标DAU、LTV及参考范围

文章目录 前言运营指标指标范围参考值留存指标的意义总结 前言 作为游戏人免不了听到 DAU 、UP值、留存 等名词&#xff0c;并且有些名词听起来还很像&#xff0c;特别是一款上线的游戏&#xff0c;这些游戏运营指标是衡量游戏业务绩效和用户参与度的重要数据&#xff0c;想做…...

标准模板库STL——deque和list

deque概述 deque属于顺序容器&#xff0c;称为双端队列容器 底层数据结构是动态二维数组&#xff0c;从整体上看&#xff0c;deque的内存不连续 初始数组第一维数量为2&#xff0c;必要时进行2倍扩容 每次第一维扩容后&#xff0c;原来数组第二维元素从新数组下标为OldSize/2的…...

分类预测 | MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测

分类预测 | MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测 目录 分类预测 | MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测分类效果基本描述模型描述程序设计参考资料 分类效果 基本描述 1.Matlab实现WOA-CNN-BiGRU-Attention多特征分类预测&#xff0c;多特征输入模型&…...

C++ Primer Plus 第6版 读书笔记(10) 第十章 类与对象

第十章 类与对象 在面向对象编程中&#xff0c;类和对象是两个重要的概念。 类&#xff08;Class&#xff09;是一种用户自定义的数据类型&#xff0c;用于封装数据和操作。它是对象的模板或蓝图&#xff0c;描述了对象的属性&#xff08;成员变量&#xff09;和行为&#xf…...

基于C++ 的OpenCV绘制多边形,多边形多条边用不用的颜色绘制

使用基于C的OpenCV库来绘制多边形&#xff0c;并且为多边形的不同边使用不同的颜色&#xff0c;可以按照以下步骤进行操作&#xff1a; 首先&#xff0c;确保你已经安装了OpenCV库并配置好了你的开发环境。 导入必要的头文件&#xff1a; #include <opencv2/opencv.hpp&g…...

(六)、深度学习框架中的算子

1、深度学习框架算子的基本概念 深度学习框架中的算子&#xff08;operator&#xff09;是指用于执行各种数学运算和操作的函数或类。这些算子通常被用来构建神经网络的各个层和组件&#xff0c;实现数据的传递、转换和计算。 算子是深度学习模型的基本组成单元&#xff0c;它们…...

Redis实现共享Session

Redis实现共享Session 分布式系统中&#xff0c;sessiong共享有很多的解决方案&#xff0c;其中托管到缓存中应该是最常用的方案之一。 1、引入依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM…...

网络通信原理UDP协议(第五十课)

UDP协议:用户数据包协议,无连接、不可靠,效率高 字段长度描述Source Port2字节标识哪个应用程序发送(发送进程)。Destination Port2字节标识哪个应用程序接收(接收进程)。Length2字节UDP首部加上UDP数据的字节数,最小为8。Checksum2字节覆盖UDP首部和UDP数据,是可…...

43、TCP报文(一)

本节内容开始&#xff0c;我们正式学习TCP协议中具体的一些原理。首先&#xff0c;最重要的内容仍然是这个协议的封装结构和首部格式&#xff0c;因为这里面牵扯到一些环环相扣的知识点&#xff0c;例如ACK、SYN等等&#xff0c;如果这些内容不能很好的理解&#xff0c;那么后续…...

【JavaScript】使用js实现滑块验证码功能与浏览器打印

滑块验证码 效果图&#xff1a; 实现思路&#xff1a; 根据滑块的最左侧点跟最右侧点&#xff0c; 是否在规定的距离内【页面最左侧为原点】&#xff0c;来判断是否通过 html代码&#xff1a; <!DOCTYPE html> <html><head><title>滑动图片验证码&…...

【使用群晖远程链接drive挂载电脑硬盘】

文章目录 前言1.群晖Synology Drive套件的安装1.1 安装Synology Drive套件1.2 设置Synology Drive套件1.3 局域网内电脑测试和使用 2.使用cpolar远程访问内网Synology Drive2.1 Cpolar云端设置2.2 Cpolar本地设置2.3 测试和使用 3. 结语 前言 群晖作为专业的数据存储中心&…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文&#xff5c;DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色&#xff0c;华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型&#xff0c;能助力我们轻松驾驭 DeepSeek-V3/R1&#xff0c;本文中将分享如何…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

【C++进阶篇】智能指针

C内存管理终极指南&#xff1a;智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...

在树莓派上添加音频输入设备的几种方法

在树莓派上添加音频输入设备可以通过以下步骤完成&#xff0c;具体方法取决于设备类型&#xff08;如USB麦克风、3.5mm接口麦克风或HDMI音频输入&#xff09;。以下是详细指南&#xff1a; 1. 连接音频输入设备 USB麦克风/声卡&#xff1a;直接插入树莓派的USB接口。3.5mm麦克…...

macOS 终端智能代理检测

&#x1f9e0; 终端智能代理检测&#xff1a;自动判断是否需要设置代理访问 GitHub 在开发中&#xff0c;使用 GitHub 是非常常见的需求。但有时候我们会发现某些命令失败、插件无法更新&#xff0c;例如&#xff1a; fatal: unable to access https://github.com/ohmyzsh/oh…...