当前位置: 首页 > news >正文

stable_diffusion_webui docker环境配置

1.新建docker环境

docker  run -tid --name  e_commerce_sd --net host --runtime=nvidia  nvidia/cuda:11.1-cudnn8-devel-cent                                                                      os7-ssh /bin/bashdocker exec -ti e_commerce_sd /bin/bash
echo 'export PS1="DOCKER[\u@\h \w]\$"' > ~/.bashrc
exit
docker exec -ti e_commerce_sd /bin/bash
exit
docker cp e_commerce_sd.zip e_commerce_sd:/root
docker exec -ti e_commerce_sd /bin/bashdocker commit e_commerce e_commerce_sd_sam:v1.0docker images
docker rmi IMAGE ID[:3](前三个数字)

2.安装miniconda

yum install wget
wget -c https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
sh Miniconda3-latest-Linux-x86_64.sh
source ~/.bashrcconda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
python -m pip config set global.index-url https://mirrors.aliyun.com/pypi/simple
python -m pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simpleconda create -n py38 python==3.8
conda activate py38

3.配置stable_diffusion_webui

直接使用stable_difffusion_webui下的launch.py可能会有些问题,建议

pip install open_clip-bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b.zip
pip install CLIP-d50d76daa670286dd6cacf3bcd80b5e4823fc8e1.zip
pip install GFPGAN-8d2447a2d918f8eba5a4a01463fd48e45126a379.zip
pip install -r requirements_versions.txt
pip install opencv-python-headless
pip install gdown

4.安装tensorrt

tar -xzvf TensorRT-8.6.1.6.Linux.x86_64-gnu.cuda-11.8.tar.gz

1.利用vim进入~/.bashrc文档,摁住ctrl+g,直接跳到最后一行,摁一下i键,进入插入模式,现在可以编辑文档了。 2.跳到最后一个字符,摁一下换行,可以在下一行输入命令。 3.一般来说在Ubuntu的终端中,ctrl+shift+c是复制,Ctrl+shift+v是粘贴,可以先写好直接粘贴; 4.我们输入第一个环境变量配置:

export LD_LIBRARY_PATH=/home/TensorRT-8.6.1.6/lib${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
export PATH=/home/TensorRT-8.6.1.6/bin${PATH:+:${PATH}}

5.路径添加好了,该关闭~/.bashrc了,摁一下esc键,退出插入模式; 6.输入冒号:wq,关闭bashrc; 7.这时候还没有生效!需要source一下

source ~/.bashrc
cd python
pip install tensorrt-8.6.1-cp38-none-linux_x86_64.whl

安装pycuda

pip install pycuda==2019.1
export CUDA_VISIBLE_DEVICES=3

相关文章:

stable_diffusion_webui docker环境配置

1.新建docker环境 docker run -tid --name e_commerce_sd --net host --runtimenvidia nvidia/cuda:11.1-cudnn8-devel-cent os7-ssh /bin/bashdocker exec -ti e_commerce_sd /bin/bash echo expor…...

【Java】常见面试题:HTTP/HTTPS、Servlet、Cookie、Linux和JVM

文章目录 1. 抓包工具(了解)2. 【经典面试题】GET和POST的区别:3. URL中不是也有这个服务器主机的IP和端口吗,为啥还要搞个Host?4. 补充5. HTTP响应状态码6. 总结HTTPS工作过程(经典面试题)7. H…...

批量爬虫采集完成任务

批量爬虫采集是现代数据获取的重要手段,然而如何高效完成这项任务却是让许多程序员头疼的问题。本文将分享一些实际操作价值高的方法,帮助你提高批量爬虫采集的效率和专业度。 目标明确,任务合理划分: 在开始批量爬虫采集前&…...

intelij idea 2023 创建java web项目

1.点击New Project 2.创建项目名称为helloweb ,jdk版本这里使用8,更高版本也不影响工程创建 点击create 3.新建的工程是空的,点击File-> Project Structure 4.点击Modules 5.点击加号,然后键盘输入web可以搜索到web模块&…...

【论文笔记】基于指令回译的语言模型自对齐-MetaAI

MetaAI最近发布的Humpback,论文链接:https://arxiv.org/abs/2308.06259 解决什么问题? 大量高质量的指令微调数据集的生成。 思路 在这项工作中,我们通过开发迭代自训练算法来利用大量未标记的数据来创建高质量的指令调优数据集…...

MySQL和MariaDB的版本对应关系

MariaDB 10.0和MariaDB 10.1可以作为MySQL 5.6的有限替代。 MariaDB 10.2可以作为MySQL 5.7的有限替代。 一,目前最新版本 MariaDB 10.5.8 10.4.17 10.3.27 10.2.36 MySQL 8.0.23 二,oracle MySQL版本和MariaDB版本对应表: MariaDB版本 …...

Python数据的输入与输出

编辑:2023-08-14 17:00 Python是一种高级编程语言,它支持多种输入输出方式,包括标准输入输出、文件输入输出等。本文将从以下几个方面详细阐述Python数据的输入与输出。 一、标准输入输出 Python中的标准输入和标准输出指的是控制台输入输…...

生成国密密钥对

在线生成国密密钥对 生成的密钥对要妥善保管,丢失是无法找回的。...

ASR(自动语音识别)任务中的LLM(大语言模型)

一、LLM大语言模型的特点 二、大语言模型在ASR任务中的应用 浅度融合 浅层融合指的是LLM本身并没有和音频信息进行直接计算。其仅对ASR模型输出的文本结果进行重打分或者质量评估。 深度融合 LLM与ASR模型进行深度结合,统一语音和文本的编码空间或者直接利用ASR…...

简单介绍一下centos上有什么工具可以优雅的管理开机启动项

在CentOS上,你可以使用以下工具来优雅地管理开机启动项: systemctl:systemctl 是 systemd 系统和服务管理器的主要命令。它提供了一种优雅的方式来管理启动项。你可以使用 systemctl 命令来启用、禁用、查看和管理系统服务。例如,…...

万宾燃气管网监测解决方案,守护城市生命线安全

方案背景 城市燃气管网作为连接天然气长输管线与天然气用户的桥梁,担负着向企业和居民用户直接供气的重要职责。随着城市燃气需求的急剧增加,城市燃气管网规模日趋庞大,安全隐患和风险也随之增加。目前,我国燃气管网的运行仍存在…...

Django框架 靓号管理(增删改查)

Django框架 靓号管理(增删改查) 新建一个项目 backend 使用pycharm创建app startapp app项目目录 C:\code\backend ├── app | ├── admin.py | ├── apps.py | ├── migrations | ├── models.py | ├── tests.py | ├── views.…...

责任链模式简单实现

两种实现方式 第一种 public interface IBaseTask {public void doAction(String isTask,IBaseTask iBaseTask); }public class ChainManager implements IBaseTask{//工作类的集合private List<IBaseTask> iBaseTaskList new ArrayList<>();public void addTas…...

Excel自动化办公——Openpyxl的基本使用

Excel自动化办公——Openpyxl的基本使用 个人感觉&#xff0c;相比Pandas&#xff0c;openpyxl对Excel的操作更为细致&#xff0c;Pandas则更适用于统计计算&#xff1b; 01 基本环境02 Excel数据读取操作03 案例04 向Excel写入数据05 表数据定向修改06 单元格样式制定07 单元…...

解决Fastjson2 oom(Out Of Memory),支持大对象(LargeObject 1G)json操作

在使用Fastjson中的 JSON.toJSONString时,如果对象数据太大&#xff08;>64M&#xff09;会出现Out Of Memory,查看源码发现为JSONWriter中的判断代码 其中maxArraySize默认最大为64M,如果超过了就会抛出oom错误 如果fastjson过多的使用内存,也可能导致java堆内存溢出,所以这…...

SpringBoot + redis处理购物车逻辑

1、pom.xml <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency> 2、application.xml spring: characterEncodingutf-8&useSSLfalseredis:host: 127.0.…...

open cv学习 (五) 图像的阈值处理

图像的阈值处理 demo1 # 二值化处理黑白渐变图 import cv2 img cv2.imread("./img.png", 0) # 二值化处理 t1, dst cv2.threshold(img, 127, 255, cv2.THRESH_BINARY) cv2.imshow("img", img) cv2.imshow("dst", dst) cv2.waitKey() cv2.des…...

NVIDIA vGPU License许可服务器高可用全套部署秘籍

第1章 前言 近期遇到比较多的场景使用vGPU&#xff0c;比如Citrix 3D场景、Horizon 3D场景&#xff0c;还有AI等&#xff0c;都需要使用显卡设计研发等&#xff0c;此时许可服务器尤为重要&#xff0c;许可断掉会出现掉帧等情况&#xff0c;我们此次教大家部署HA许可服务器。 …...

基于CNN卷积神经网络的口罩检测识别系统matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ............................................................ % 循环处理每张输入图像 for…...

《HeadFirst设计模式(第二版)》第九章代码——迭代器模式

情景&#xff1a; 一家早餐店和一家午餐点准备合并在一起&#xff0c;两家的点菜的菜单实现方式如下: 首先&#xff0c;他们的菜单选项都基于同一个类&#xff1a; 菜单选项类 package Chapter9_IteratorPattern.Origin;/*** Author 竹心* Date 2023/8/17**/public class Men…...

Electron入门,项目启动。

electron 简单介绍&#xff1a; 实现&#xff1a;HTML/CSS/JS桌面程序&#xff0c;搭建跨平台桌面应用。 electron 官方文档&#xff1a; [https://electronjs.org/docs] 本文是基于以下2篇文章且自行实践过的&#xff0c;可行性真实有效。 文章1&#xff1a; https://www.cnbl…...

深入理解索引B+树的基本原理

目录 1. 引言 2. 为什么要使用索引&#xff1f; 3. 索引的概述 4. 索引的优点是什么&#xff1f; 4.1 降低数据库的IO成本&#xff0c;提高数据查找效率 4.2 保证数据库每一行数据的唯一性 4.3 加速表与表之间的连接 4.4 减少查询中分组与排序的执行时间 5. 索引的缺点…...

vue3 简易用对话框实现点击头像放大查看

设置头像悬停手势 img:hover{cursor: pointer;}效果&#xff1a; 编写对话框 <el-dialog class"bigAvatar"style"border-radius: 4px;"v-model"deleteDialogVisible"title"查看头像"top"5px"><div><img src&…...

opencv 矩阵运算

1.矩阵乘&#xff08;*&#xff09; Mat mat1 Mat::ones(2,3,CV_32FC1);Mat mat2 Mat::ones(3,2,CV_32FC1);Mat mat3 mat1 * mat2; //矩阵乘 结果 2.元素乘法或者除法&#xff08;mul&#xff09; Mat m Mat::ones(2, 3, CV_32FC1);m.at<float>(0, 1) 3;m.at…...

第四章 字符串part01

344.反转字符串 public void reverseString(char[] s) {int len s.length;int left 0;int right len-1;while (left < right){char tmp s[right];s[right] s[left];s[left] tmp;left;right--;} }反转字符串II 注意String不可变&#xff0c;因此可使用char数组或者St…...

Python3内置函数大全

吐血整理 Python3内置函数大全 1.abs()函数2.all()函数3.any()函数4.ascii()函数5.bin()函数6.bool()函数7.bytes()函数8.challable()函数9.chr()函数10.classmethod()函数11.complex()函数12.complie()函数13.delattr()函数14.dict()函数15.dir()函数16.divmod()函数17.enumer…...

什么是“新型基础设施”?建设重点是什么?

一是信息基础设施。主要是指基于新一代信息技术演化生成的基础设施&#xff0c;比如&#xff0c;以5G、物联网、工业互联网、卫星互联网为代表的通信网络基础设施&#xff0c;以人工智能、云计算、区块链等为代表的新技术基础设施&#xff0c;以数据中心、智能计算中心为代表的…...

混杂接口模式---vlan

策略在两个地方可以用--1、重发布 2、bgp邻居 2、二层可以干的&#xff0c;三层也可以干 3、未知单播&#xff1a;交换机的MAC地址表的记录保留时间是5分钟&#xff0c;电脑的ARP表的记录保留时间是2小时 4、route recursive-lookup tunnel 华为默认对于bgp学习来的路由不开启标…...

Greenplum多级分区表添加分区报错ERROR: no partitions specified at depth 2

一般来说&#xff0c;我们二级分区表都会使用模版&#xff0c;如果没有使用模版特性&#xff0c;那么就会报ERROR: no partitions specified at depth 2类似的错误。因为没有模版&#xff0c;必须要显式指定分区。 当然我们在建表的时候&#xff0c;如果没有指定&#xff0c;那…...

EV PV AC SPI CPI TCPI

SPI EV / PV CPI EV / ACCPI 1.25 SPI 0.8 PV 10 000 BAC 100 000EV PV * SPI 10 000 * 0.8 8000 AC EV / CPI 8000 / 1.25 6400TCPI (BAC - EV) / (BAC -AC) (100 000 - 8 000) / (100 000 - 6 400) 92 000 / 93 600 0.98290598...