当前位置: 首页 > news >正文

对比学习损失—InfoNCE理论理解

InfoNoise的理解

InfoNCE loss

最近在看对比学习的东西,记录点基础的东西

「对比学习」 属于无监督学习的一种,给一堆数据,没有标签,自己学习出一种特征表示。

InfoNCE 这个损失是来自于论文:Momentum Contrast for Unsupervised Visual Representation Learning.

MoCo提出,我们可以把对比学习看成是一个字典查询的任务,即训练一个编码器从而去做字典查询的任务。假设已经有一个编码好的query q q q(一个特征),以及一系列编码好的样本 k 0 , k 1 , k 2 , . . . k_0, k_1, k_2,... k0,k1,k2,...,那么 k 0 , k 1 , k 2 , . . . k_0, k_1, k_2,... k0,k1,k2,...可以看作是字典里的key。假设字典里只有一个key k + k_+ k+(称为 positive)是跟 q q q 匹配的,它们就互为正样本对,其余的key为 q q q 的负样本。一旦定义好了正负样本对,就需要一个对比学习的损失函数来指导模型进行学习。

在这里插入图片描述
这个损失函数显然要满足要求:

  • q q q 和唯一的正样本 k + k_+ k+相似,并且和其他所有负样本key都不相似的时候,这个loss的值应该比较低。
  • q q q k + k_+ k+ 不相似,或者和其他负样本的key相似了,那么loss就应该大,从而惩罚模型。

(嗯,合情合理,符合逻辑)

InfoNCE loss公式如下: L q = − l o g e x p ( q ⋅ k + / τ ) ∑ i = 0 k e x p ( q ⋅ k i / τ ) L_q=-log\frac{exp(q\cdot k_+ / \tau)}{\sum_{i=0}^k exp(q\cdot k_i / \tau)} Lq=logi=0kexp(qki/τ)exp(qk+/τ)Info NCE loss其实是NCE的一个简单变体,它认为如果只把问题看作是一个二分类,只有数据样本和噪声样本的话,可能对模型学习不友好,因为很多噪声样本可能本就不是一个类,因此还是把它看成一个多分类问题比较合理(但这里的多分类 k k k 指代的是负采样之后负样本的数量)。于是就有了InfoNCE loss

先看一下softmax公式: y ^ = s o f t m a x ( z ) = e x p ( z ) ∑ i = 0 k e x p ( z i ) \hat y=softmax(z)=\frac{exp(z)}{\sum_{i=0}^k exp(z_i)} y^=softmax(z)=i=0kexp(zi)exp(z)而交叉熵损失函数为: L ( y ^ ) = − ∑ i = 0 k y i l o g ( y ^ i ) L(\hat y)=-\sum_{i=0}^ky_ilog(\hat y_i) L(y^)=i=0kyilog(y^i)仔细观察上面的交叉熵的计算公式可以知道,因为 y i y_i yi的元素不是0就是1,而且又是乘法,所以很自然地我们如果知道1所对应的index,那么就不用做其他无意义的运算了。

在监督学习下,ground truth是一个one-hot向量,softmax的 y ^ \hat y y^结果取 − l o g -log log,再与ground truth相乘,即得到如下交叉熵损失: − l o g e x p ( z ) ∑ i = 0 k e x p ( z i ) -log\frac{exp(z)}{\sum_{i=0}^k exp(z_i)} logi=0kexp(zi)exp(z)

上式中, q ⋅ k q\cdot k qk 是模型出来的logits,相当于softmax公式中的 z z z τ \tau τ是一个温度超参,是个标量,假设我们忽略,那么infoNCE loss其实就是cross entropy loss。唯一的区别是,在cross entropy loss里, k k k 指代的是数据集里类别的数量,而在对比学习InfoNCE loss里,这个 k k k 指的是负样本的数量。上式分母中的 ∑ \sum 是在1个正样本和 k k k个负样本上做的,从0到k,所以共 k + 1 k+1 k+1 个样本,也就是字典里所有的key。MoCo里提到,InfoNCE loss其实就是一个cross entropy loss,做的是一个k+1类的分类任务,目的就是想把这个 q q q 图片分到 k + k_+ k+这个类。

温度系数 τ \tau τ

再来说一下这个温度系数 τ \tau τ,虽然只是一个超参数,但它的设置是非常讲究的,直接影响了模型的效果。

上式Info NCE loss中的相当于是logits,温度系数可以用来控制logits的分布形状。对于既定的logits分布的形状,当 τ \tau τ值变大,则 1 / τ 1/\tau 1/τ就变小,则 q ⋅ k / τ q\cdot k/\tau qk/τ 会使得原来logits分布里的数值都变小,且经过指数运算之后,就变得更小了,导致原来的logits分布变得更平滑。相反,如果 τ \tau τ取得值小,就 1 / τ 1/\tau 1/τ 变大,原来的logits分布里的数值就相应的变大,经过指数运算之后,就变得更大,使得这个分布变得更集中,更加的peak。
如果温度系数设的越大,logits分布变得越平滑,那么对比损失会对所有的负样本一视同仁,导致模型学习没有轻重。如果温度系数设的过小,则模型会越关注特别困难的负样本,但其实那些负样本很可能是潜在的正样本,这样会导致模型很难收敛或者泛化能力差。

总之,温度系数的作用就是控制模型对负样本的区分度

相关文章:

对比学习损失—InfoNCE理论理解

InfoNoise的理解 InfoNCE loss温度系数 τ \tau τ InfoNCE loss 最近在看对比学习的东西,记录点基础的东西 「对比学习」 属于无监督学习的一种,给一堆数据,没有标签,自己学习出一种特征表示。 InfoNCE 这个损失是来自于论文&am…...

贝锐蒲公英助力电子公交站牌联网远程运维,打造智慧出行新趋势

在现代城市公共交通系统中,我们随处可见电子公交站牌的身影。作为公共交通服务的核心之一,电子公交站牌的稳定运行至关重要,公交站台的实时公交状况、公共广告信息,是市民候车时关注的焦点。 某交通科技公司在承接某市智能电子站牌…...

SpringBoot + Vue 微人事(十)

职位管理前后端接口对接 先把table中的数据展示出来,table里面的数据实际上是positions里面的数据,就是要给positions:[] 赋上值 可以在methods中定义一个initPosition方法 methods:{//定义一个初始化positions的方法initPositions(){//发送一个get请求…...

【Redis】Redis哨兵模式

【Redis】Redis哨兵模式 Redis主从模式当主服务器宕机后,需要手动把一台从服务器切换为主服务器,需要人工干预费事费力,为了解决这个问题出现了哨兵模式。 哨兵模式是是一个管理多个 Redis 实例的工具,它可以实现对 Redis 的监控…...

系统架构师---软件重用、基于架构的软件设计、软件模型

目录 软件重用 构件技术 基于架构的软件设计 ABSD方法与生命周期 抽象功能需求 用例 抽象的质量和业务需求 架构选项 质量场景 约束 基于架构的软件开发模型 架构需求 需求获取 标识构件 需求评审 架构设计 架构文档 架构复审 架构实现 架构演化 前言&…...

【Web开发指南】MyEclipse XML编辑器的高级功能简介

MyEclipse v2023.1.2离线版下载 1. 在MyEclipse中编辑XML 本文档介绍MyEclipse XML编辑器中的一些可用的函数,MyEclipse XML编辑器包括高级XML编辑,例如: 语法高亮显示标签和属性内容辅助实时验证(当您输入时)文档内容的源(Sou…...

设计模式-观察者模式(观察者模式的需求衍变过程详解,关于监听的理解)

目录 前言概念你有过这样的问题吗? 详细介绍原理:应用场景: 实现方式:类图代码 问题回答监听,为什么叫监听,具体代码是哪观察者模式的需求衍变过程观察者是为什么是行为型 总结: 前言 在软件设计…...

vue+electron中实现文件下载打开wps预览

下载事件 win.webContents.downloadURL(url) 触发session的will-download事件 win.webContents.session.on(will-download, (event, downloadItem, webContents) > {// 设置文件保存路径// 如果用户没有设置保存路径,Electron将使用默认方式来确定保存路径&am…...

第4章 性能分析中的术语和指标

Linux perf和Intel VTune Profiler工具。 4.1 退休指令与执行指令 考虑到投机执行,CPU执行的指令要不退休指令多。Linux perf使用perf stat -e instruction ./a.exe即可获得退休指令的数量。 4.2 CPU利用率 CPU利用率表示在一段时间内的繁忙程度,用时…...

数字化转型能带来哪些价值?_光点科技

随着科技的迅猛发展,数字化转型已成为企业和组织的一项重要战略。它不仅改变了商业模式和运营方式,还为各行各业带来了诸多新的机遇和价值。在这篇文章中,我们将探讨数字化转型所能带来的价值。 数字化转型能够显著提升效率和生产力。通过引入…...

适用于Android™的Windows子系统Windows Subsystem fo r Android™Win11安装指南

文章目录 一、需求二、Windows Subsystem for Android™Win11简介三、安装教程1.查看BIOS是否开启虚拟化2.安装Hyper-V、虚拟机平台3.启动虚拟机管理程序(可选)4.安装适用于Android™的Windows子系统5.相关设置 一、需求 需要在电脑上进行网课APP(无客户端只有App&…...

hive高频使用的拼接函数及“避坑”

hive高频使用的拼接函数及“避坑” 说到拼接函数应用场景和使用频次还是非常高,比如一个员工在公司充当多个角色,我们在底层存数的时候往往是多行,但是应用的时候我们通常会只需要一行,角色字段进行拼接,这样join其他…...

windows ipv4 多ip地址设置,默认网关跃点和自动跃点是什么意思?(跃点数)

文章目录 Windows中的IPv4多IP地址设置以及默认网关跃点和自动跃点的含义引言IPv4和IPv6:简介多IP地址设置:Windows环境中的实现默认网关跃点:概念和作用自动跃点:何时使用?关于“跃点数”如何确定应该设置多少跃点数&…...

java_免费文本翻译API_小牛翻译

目录 前言 开始集成API 纯文本翻译接口 双语对照翻译接口 指定术语翻译接口 总结 前言 网络上对百度,有道等的文本翻译API集成的文章比较多,所以集成的第一篇选择了小牛翻译的文本翻译API。 小牛翻译文本翻译API,支持388个语种&#xff0…...

flink消费kafka数据,按照指定时间开始消费

kafka中根据时间戳开始消费数据 import org.apache.flink.api.java.utils.ParameterTool; import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer; import org.apache.flink.kafka.shaded.org.apache.kafka.clients.consumer.OffsetRese…...

【SpringCloud】Feign使用

文章目录 配置maven启动类添加yml 使用添加Feign服务Controller 其他设置超时设置YML开启OpenFeign客户端超时控制&#xff08;Ribbon Timeout&#xff09;OpenFeign日志打印功能日志级别YML开启日志 配置 maven <dependencies><!--openfeign--><dependency&g…...

WebApIs 第五天

window对象 BOM&#xff08;浏览器对象模型&#xff09;定时器-延时函数JS执行机制location对象navigator对象histroy对象 本地存储 一.BOM&#xff08;浏览器对象模型&#xff09; ① BOM是浏览器对象模型 window 对象是一个全局对象&#xff0c;也可以说是JavaScript中的…...

按斤称的C++散知识

一、多线程 std::thread()、join() 的用法&#xff1a;使用std::thread()可以创建一个线程&#xff0c;同时指定线程执行函数以及参数&#xff0c;同时也可使用lamda表达式。 #include <iostream> #include <thread>void threadFunction(int num) {std::cout <…...

C++策略模式

1 简介&#xff1a; 策略模式是一种行为型设计模式&#xff0c;用于在运行时根据不同的情况选择不同的算法或行为。它将算法封装成一个个具体的策略类&#xff0c;并使这些策略类可以相互替换&#xff0c;以达到动态改变对象的行为的目的。 2 实现步骤&#xff1a; 以下是使用…...

如何在网页下载腾讯视频为本地MP4格式

1.打开腾讯视频官网地址 腾讯视频 2.搜索你想要下载的视频 3. 点击分享,选择复制通用代码 <iframe frameborder="0" src="ht...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...