当前位置: 首页 > news >正文

Lnton羚通关于【PyTorch】教程:torchvision 目标检测微调

torchvision 目标检测微调
本教程将使用Penn-Fudan Database for Pedestrian Detection and Segmentation 微调 预训练的Mask R-CNN 模型。 它包含 170 张图片,345 个行人实例。

定义数据集
用于训练目标检测、实例分割和人物关键点检测的参考脚本允许轻松支持添加新的自定义数据集。数据集应继承自标准的 torch.utils.data.dataset 类,并实现 __len__ 和 __getitem__ 。

__getitem__ 需要返回:

image: PIL 图像 (H, W)
target: 字典数据,需要包含字段
boxes (FloatTensor[N, 4]): N 个 Bounding box 的位置坐标 [x0, y0, x1, y1], 0~W, 0~H
labels (Int64Tensor[N]): 每个 Bounding box 的类别标签,0 代表背景类。
image_id (Int64Tensor[1]): 图像的标签 id,在数据集中是唯一的。
area (Tensor[N]): Bounding box 的面积,在 COCO 度量里使用,可以分别对不同大小的目标进行度量。
iscrowd (UInt8Tensor[N]): 如果 iscrowd=True 在评估时忽略。
(optionally) masks (UInt8Tensor[N, H, W]): 可选的 分割掩码
(optionally) keypoints (FloatTensor[N, K, 3]): 对于 N 个目标来说,包含 K 个关键点 [x, y, visibility], visibility=0 表示关键点不可见。
如果模型可以返回上述方法,可以在训练、评估都能使用,可以用 pycocotools 里的脚本进行评估。

pip install pycocotools 安装工具。

关于 labels 有个说明,模型默认 0 为背景。如果数据集没有背景类别,不需要在标签里添加 0 。 例如,假设有 cat 和 dog 两类,定义了 1 表示 cat , 2 表示 dog , 如果一个图像有两个类别,类别的 tensor 为 [1, 2] 。

此外,如果希望在训练时使用纵横比分组,那么建议实现 get_height_and_width 方法,该方法将返回图像的高度和宽度,如果未提供此方法,我们将通过 __getitem__ 查询数据集的所有元素,这会将图像加载到内存中,并且比提供自定义方法的速度慢。

为 PennFudan 写自定义数据集
文件夹结构如下:

PennFudanPed/PedMasks/FudanPed00001_mask.pngFudanPed00002_mask.pngFudanPed00003_mask.pngFudanPed00004_mask.png...PNGImages/FudanPed00001.pngFudanPed00002.pngFudanPed00003.pngFudanPed00004.png

这是图像的标注信息,包含了 mask 以及 bounding box 。每个图像都有对应的分割掩码,每个颜色代表不同的实例。

import os 
import numpy as np 
import torch 
from PIL import Imageclass PennFudanDataset(torch.utils.data.Dataset):def __init__(self, root, transforms):self.root = rootself.transforms = transforms## 加载所有图像,sort 保证他们能够对应起来self.images = list(sorted(os.listdir(os.path.join(self.root, 'PNGImages'))))self.masks = list(sorted(os.listdir(os.path.join(self.root, 'PedMasks'))))def __getitem__(self, idx):img_path = os.path.join(self.root, 'PNGImages', self.images[idx])mask_path = os.path.join(self.root, 'PedMasks', self.masks[idx])image = Image.open(img_path).convert('RGB')## mask 图像并没有转换为 RGB,里面存储的是标签,0表示的是背景mask = Image.open(mask_path)# 转换为 numpymask = np.array(mask) # 实例解码成不同的颜色obj_ids = np.unique(mask)# 移除背景obj_ids = obj_ids[1:]masks = mask == obj_ids[:, None, None]# get bounding box coordinates for each masknum_objs = len(obj_ids)boxes = []for i in range(num_objs):pos = np.where(masks[i])xmin = np.min(pos[1])xmax = np.max(pos[1])ymin = np.min(pos[0])ymax = np.max(pos[0])boxes.append([xmin, ymin, xmax, ymax])# 转换为 tensorboxes = torch.as_tensor(boxes, dtype=torch.float32)labels = torch.ones((num_objs,), dtype=torch.int64)masks = torch.as_tensor(masks, dtype=torch.uint8)image_id = torch.tensor([idx])area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])iscrowd = torch.zeros((num_objs,), dtype=torch.int64)target = {}target["boxes"] = boxestarget["labels"] = labelstarget["masks"] = maskstarget["image_id"] = image_idtarget["area"] = areatarget["iscrowd"] = iscrowdif self.transforms is not None:image, target = self.transforms(image, target)return image, targetdef __len__(self):return len(self.images)

Lnton羚通专注于音视频算法、算力、云平台的高科技人工智能企业。 公司基于视频分析技术、视频智能传输技术、远程监测技术以及智能语音融合技术等, 拥有多款可支持ONVIF、RTSP、GB/T28181等多协议、多路数的音视频智能分析服务器/云平台。

相关文章:

Lnton羚通关于【PyTorch】教程:torchvision 目标检测微调

torchvision 目标检测微调 本教程将使用Penn-Fudan Database for Pedestrian Detection and Segmentation 微调 预训练的Mask R-CNN 模型。 它包含 170 张图片,345 个行人实例。 定义数据集 用于训练目标检测、实例分割和人物关键点检测的参考脚本允许轻松支持添加…...

AMD fTPM RNG的BUG使得Linus Torvalds不满

导读因为在 Ryzen 系统上对内核造成了困扰,Linus Torvalds 最近在邮件列表中表达了对 AMD fTPM 硬件随机数生成器的不满,并提出了禁用该功能的建议。 因为在 Ryzen 系统上对内核造成了困扰,Linus Torvalds 最近在邮件列表中表达了对 AMD fTPM…...

idea 转换为 Maven Project 的方法

选项: Add as Maven Project...

es1.7.2 按照_type先聚合,再按照时间二次聚合

// 设置查询条件if (this.query ! null) {this.searchbuilder.setQuery(this.query);}TermsBuilder typeAggregation AggregationBuilders.terms("agg_type").field("_type");DateHistogramBuilder dateTermsBuilder AggregationBuilders.dateHistogram(…...

pyqt5 如何修改QplainTextEdit 背景色和主窗口的一样颜色

如果您希望将 QPlainTextEdit 的背景颜色设置为与窗口背景相似的灰色,您可以使用窗口的背景颜色作为基准来设置 QPlainTextEdit 的背景颜色。以下是一个示例代码,展示如何实现这一点: from PyQt5.QtWidgets import QApplication, QMainWindo…...

解决使用element ui时el-input的属性type=number,仍然可以输入e的问题。

使用element ui时el-input的属性typenumber,仍然可以输入e, 其他的中文特殊字符都不可以输入,但是只有e是可以输入的,原因是e也输入作为科学计数法的时候,e是可以被判定为数字的, 但是有些场景是需要把e这种…...

ShardingSphere 可观测 SQL 指标监控

ShardingSphere并不负责如何采集、存储以及展示应用性能监控的相关数据,而是将SQL解析与SQL执行这两块数据分片的最核心的相关信息发送至应用性能监控系统,并交由其处理。 换句话说,ShardingSphere仅负责产生具有价值的数据,并通过…...

Redisson实现分布式锁示例

一、引入依赖 <dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.16.0</version></dependency>二、配置类 import org.redisson.Redisson; import org.redisson.api.RedissonClient;…...

使用Nginx作为一个普通代理服务器

使用Nginx作为一个普通代理服务器, 请不要用于违法用途哦 nginx作为一个反向代理工具&#xff0c;除了可以进行反向代理之外&#xff0c;还可以用来作为代理工具来使用&#xff0c;作为代理工具使用的步骤如下&#xff0c;这个配置目前支持80端口 Windows系统代理设置对应IP, …...

chatglm2-6b模型在9n-triton中部署并集成至langchain实践 | 京东云技术团队

一.前言 近期&#xff0c; ChatGLM-6B 的第二代版本ChatGLM2-6B已经正式发布&#xff0c;引入了如下新特性&#xff1a; ①. 基座模型升级&#xff0c;性能更强大&#xff0c;在中文C-Eval榜单中&#xff0c;以51.7分位列第6&#xff1b; ②. 支持8K-32k的上下文&#xff1b…...

Shell编程之正则表达式(非常详细)

正则表达式 1.通配符和正则表达式的区别2.基本正则表达式2.1 元字符 &#xff08;字符匹配)2.2 表示匹配次数2.4 位置锚定2.5 分组 和 或者 3.扩展正则表达式4.部分文本处理工具4.1 tr 命令4.2 cut命令4.3 sort命令4.4 uniq命令 1.通配符和正则表达式的区别 通配符一般用于文件…...

RNN模型简单理解和CNN区别

目录 神经网络&#xff1a;水平方向延伸&#xff0c;数据不具有关联性 ​ RNN&#xff1a;在神经网络的基础上加上了时间顺序&#xff0c;语义理解 ​RNN: 训练中采用梯度下降&#xff0c;反向传播 ​ 长短期记忆模型 ​输出关系&#xff1a;1 toN&#xff0c;N to N 单入…...

【Axure高保真原型】JS日期选择器筛选中继器表格

今天和大家分享JS日期选择器筛选中继器表格的原型模板&#xff0c;通过调用浏览器的日期选择器&#xff0c;所以可以获取真实的日历效果&#xff0c;具体包括哪一年二月份有29天&#xff0c;几号对应星期几&#xff0c;都是真实的&#xff0c;获取日期值后&#xff0c;通过交互…...

android bp脚本

一。android大约从7.0开始引入 .bp文件代替以前的.mk文件&#xff0c;用于帮助android项目的编译配置文件。 二。mk文件转化为bp文件&#xff0c;可以使用下面命令转化&#xff0c;注意命令中>&#xff0c;这是写入文件。androidmk是android源码自带的工具&#xff0c;他可…...

Redis 数据库 NoSQL

目录 一、NoSQL 二、为什么会出现NoSQL技术 三、NoSQL的类别 键值&#xff08;Key-Value&#xff09;存储数据库 列存储数据库 文档型数据库 图形&#xff08;Graph&#xff09;数据库 四、NoSQL适应场景 五、在分布式数据库中CAP原理 1、CAP 2、BASE 一、NoSQL NoS…...

RN 项目异常问题整理

常见问题 无法找到 CardStackStyleInterpolator StackViewStyleInterpolator 这个方法集来代替 CardStackStyleInterpolator的&#xff0c;这个方法集的路径也需要注意一下&#xff0c;在2.12.1版本之前&#xff0c; 该文件在react-navigation/src/views/StackView/中&#xf…...

STM8编程[TIM1多路PWM输出选项字节(Option Byte)操作和IO复用]

TIM1多路PWM输出选项字节(Option Byte)操作和IO复用 本文摘录于&#xff1a;https://blog.csdn.net/freeape/article/details/47008033只是做学习备份之用&#xff0c;绝无抄袭之意&#xff0c;有疑惑请联系本人&#xff01; 代码上要使用TIME1输出3路PWM,代码如下: void tim…...

Java算法_ 反转二叉树(LeetCode_Hot100)

题目描述&#xff1a;给你一棵二叉树的根节点 &#xff0c;翻转这棵二叉树&#xff0c;并返回其根节点。root。 获得更多&#xff1f;算法思路:代码文档&#xff0c;算法解析的私得。 运行效果 完整代码 /*** 2 * Author: LJJ* 3 * Date: 2023/8/16 13:18* 4*/public class In…...

C/C++ 标准模版库STL(持续更新版)

标准模版库STL 目录 算法库 栈 队列 向量 映射 列表 双向链表 集合 Iterator 送代器 <algorithm> 算法库 max, min 用于找出一组值中的最大值和最小值 swap 用于交换两个变量的值 sort 用于对一个范围内的元素进行排序 lower_bound, upper_bound 用于在已排序的容器…...

ARM(实验二)

uart4.h #ifndef __H__ #define __H__#include "stm32mp1xx_rcc.h" #include "stm32mp1xx_gpio.h" #include "stm32mp1xx_uart.h"//RCC/GPIO/UART4章节初始化 void hal_uart4_init();//发送一个字符函数 void hal_put_char(const char str);//发…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日&#xff0c;国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解&#xff0c;“超级…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...