Lnton羚通关于【PyTorch】教程:torchvision 目标检测微调
torchvision 目标检测微调
本教程将使用Penn-Fudan Database for Pedestrian Detection and Segmentation 微调 预训练的Mask R-CNN 模型。 它包含 170 张图片,345 个行人实例。
定义数据集
用于训练目标检测、实例分割和人物关键点检测的参考脚本允许轻松支持添加新的自定义数据集。数据集应继承自标准的 torch.utils.data.dataset 类,并实现 __len__ 和 __getitem__ 。
__getitem__ 需要返回:
image: PIL 图像 (H, W)
target: 字典数据,需要包含字段
boxes (FloatTensor[N, 4]): N 个 Bounding box 的位置坐标 [x0, y0, x1, y1], 0~W, 0~H
labels (Int64Tensor[N]): 每个 Bounding box 的类别标签,0 代表背景类。
image_id (Int64Tensor[1]): 图像的标签 id,在数据集中是唯一的。
area (Tensor[N]): Bounding box 的面积,在 COCO 度量里使用,可以分别对不同大小的目标进行度量。
iscrowd (UInt8Tensor[N]): 如果 iscrowd=True 在评估时忽略。
(optionally) masks (UInt8Tensor[N, H, W]): 可选的 分割掩码
(optionally) keypoints (FloatTensor[N, K, 3]): 对于 N 个目标来说,包含 K 个关键点 [x, y, visibility], visibility=0 表示关键点不可见。
如果模型可以返回上述方法,可以在训练、评估都能使用,可以用 pycocotools 里的脚本进行评估。
pip install pycocotools 安装工具。
关于 labels 有个说明,模型默认 0 为背景。如果数据集没有背景类别,不需要在标签里添加 0 。 例如,假设有 cat 和 dog 两类,定义了 1 表示 cat , 2 表示 dog , 如果一个图像有两个类别,类别的 tensor 为 [1, 2] 。
此外,如果希望在训练时使用纵横比分组,那么建议实现 get_height_and_width 方法,该方法将返回图像的高度和宽度,如果未提供此方法,我们将通过 __getitem__ 查询数据集的所有元素,这会将图像加载到内存中,并且比提供自定义方法的速度慢。
为 PennFudan 写自定义数据集
文件夹结构如下:
PennFudanPed/PedMasks/FudanPed00001_mask.pngFudanPed00002_mask.pngFudanPed00003_mask.pngFudanPed00004_mask.png...PNGImages/FudanPed00001.pngFudanPed00002.pngFudanPed00003.pngFudanPed00004.png
这是图像的标注信息,包含了 mask 以及 bounding box 。每个图像都有对应的分割掩码,每个颜色代表不同的实例。


import os
import numpy as np
import torch
from PIL import Imageclass PennFudanDataset(torch.utils.data.Dataset):def __init__(self, root, transforms):self.root = rootself.transforms = transforms## 加载所有图像,sort 保证他们能够对应起来self.images = list(sorted(os.listdir(os.path.join(self.root, 'PNGImages'))))self.masks = list(sorted(os.listdir(os.path.join(self.root, 'PedMasks'))))def __getitem__(self, idx):img_path = os.path.join(self.root, 'PNGImages', self.images[idx])mask_path = os.path.join(self.root, 'PedMasks', self.masks[idx])image = Image.open(img_path).convert('RGB')## mask 图像并没有转换为 RGB,里面存储的是标签,0表示的是背景mask = Image.open(mask_path)# 转换为 numpymask = np.array(mask) # 实例解码成不同的颜色obj_ids = np.unique(mask)# 移除背景obj_ids = obj_ids[1:]masks = mask == obj_ids[:, None, None]# get bounding box coordinates for each masknum_objs = len(obj_ids)boxes = []for i in range(num_objs):pos = np.where(masks[i])xmin = np.min(pos[1])xmax = np.max(pos[1])ymin = np.min(pos[0])ymax = np.max(pos[0])boxes.append([xmin, ymin, xmax, ymax])# 转换为 tensorboxes = torch.as_tensor(boxes, dtype=torch.float32)labels = torch.ones((num_objs,), dtype=torch.int64)masks = torch.as_tensor(masks, dtype=torch.uint8)image_id = torch.tensor([idx])area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])iscrowd = torch.zeros((num_objs,), dtype=torch.int64)target = {}target["boxes"] = boxestarget["labels"] = labelstarget["masks"] = maskstarget["image_id"] = image_idtarget["area"] = areatarget["iscrowd"] = iscrowdif self.transforms is not None:image, target = self.transforms(image, target)return image, targetdef __len__(self):return len(self.images)
Lnton羚通专注于音视频算法、算力、云平台的高科技人工智能企业。 公司基于视频分析技术、视频智能传输技术、远程监测技术以及智能语音融合技术等, 拥有多款可支持ONVIF、RTSP、GB/T28181等多协议、多路数的音视频智能分析服务器/云平台。

相关文章:
Lnton羚通关于【PyTorch】教程:torchvision 目标检测微调
torchvision 目标检测微调 本教程将使用Penn-Fudan Database for Pedestrian Detection and Segmentation 微调 预训练的Mask R-CNN 模型。 它包含 170 张图片,345 个行人实例。 定义数据集 用于训练目标检测、实例分割和人物关键点检测的参考脚本允许轻松支持添加…...
AMD fTPM RNG的BUG使得Linus Torvalds不满
导读因为在 Ryzen 系统上对内核造成了困扰,Linus Torvalds 最近在邮件列表中表达了对 AMD fTPM 硬件随机数生成器的不满,并提出了禁用该功能的建议。 因为在 Ryzen 系统上对内核造成了困扰,Linus Torvalds 最近在邮件列表中表达了对 AMD fTPM…...
idea 转换为 Maven Project 的方法
选项: Add as Maven Project...
es1.7.2 按照_type先聚合,再按照时间二次聚合
// 设置查询条件if (this.query ! null) {this.searchbuilder.setQuery(this.query);}TermsBuilder typeAggregation AggregationBuilders.terms("agg_type").field("_type");DateHistogramBuilder dateTermsBuilder AggregationBuilders.dateHistogram(…...
pyqt5 如何修改QplainTextEdit 背景色和主窗口的一样颜色
如果您希望将 QPlainTextEdit 的背景颜色设置为与窗口背景相似的灰色,您可以使用窗口的背景颜色作为基准来设置 QPlainTextEdit 的背景颜色。以下是一个示例代码,展示如何实现这一点: from PyQt5.QtWidgets import QApplication, QMainWindo…...
解决使用element ui时el-input的属性type=number,仍然可以输入e的问题。
使用element ui时el-input的属性typenumber,仍然可以输入e, 其他的中文特殊字符都不可以输入,但是只有e是可以输入的,原因是e也输入作为科学计数法的时候,e是可以被判定为数字的, 但是有些场景是需要把e这种…...
ShardingSphere 可观测 SQL 指标监控
ShardingSphere并不负责如何采集、存储以及展示应用性能监控的相关数据,而是将SQL解析与SQL执行这两块数据分片的最核心的相关信息发送至应用性能监控系统,并交由其处理。 换句话说,ShardingSphere仅负责产生具有价值的数据,并通过…...
Redisson实现分布式锁示例
一、引入依赖 <dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.16.0</version></dependency>二、配置类 import org.redisson.Redisson; import org.redisson.api.RedissonClient;…...
使用Nginx作为一个普通代理服务器
使用Nginx作为一个普通代理服务器, 请不要用于违法用途哦 nginx作为一个反向代理工具,除了可以进行反向代理之外,还可以用来作为代理工具来使用,作为代理工具使用的步骤如下,这个配置目前支持80端口 Windows系统代理设置对应IP, …...
chatglm2-6b模型在9n-triton中部署并集成至langchain实践 | 京东云技术团队
一.前言 近期, ChatGLM-6B 的第二代版本ChatGLM2-6B已经正式发布,引入了如下新特性: ①. 基座模型升级,性能更强大,在中文C-Eval榜单中,以51.7分位列第6; ②. 支持8K-32k的上下文;…...
Shell编程之正则表达式(非常详细)
正则表达式 1.通配符和正则表达式的区别2.基本正则表达式2.1 元字符 (字符匹配)2.2 表示匹配次数2.4 位置锚定2.5 分组 和 或者 3.扩展正则表达式4.部分文本处理工具4.1 tr 命令4.2 cut命令4.3 sort命令4.4 uniq命令 1.通配符和正则表达式的区别 通配符一般用于文件…...
RNN模型简单理解和CNN区别
目录 神经网络:水平方向延伸,数据不具有关联性 RNN:在神经网络的基础上加上了时间顺序,语义理解 RNN: 训练中采用梯度下降,反向传播 长短期记忆模型 输出关系:1 toN,N to N 单入…...
【Axure高保真原型】JS日期选择器筛选中继器表格
今天和大家分享JS日期选择器筛选中继器表格的原型模板,通过调用浏览器的日期选择器,所以可以获取真实的日历效果,具体包括哪一年二月份有29天,几号对应星期几,都是真实的,获取日期值后,通过交互…...
android bp脚本
一。android大约从7.0开始引入 .bp文件代替以前的.mk文件,用于帮助android项目的编译配置文件。 二。mk文件转化为bp文件,可以使用下面命令转化,注意命令中>,这是写入文件。androidmk是android源码自带的工具,他可…...
Redis 数据库 NoSQL
目录 一、NoSQL 二、为什么会出现NoSQL技术 三、NoSQL的类别 键值(Key-Value)存储数据库 列存储数据库 文档型数据库 图形(Graph)数据库 四、NoSQL适应场景 五、在分布式数据库中CAP原理 1、CAP 2、BASE 一、NoSQL NoS…...
RN 项目异常问题整理
常见问题 无法找到 CardStackStyleInterpolator StackViewStyleInterpolator 这个方法集来代替 CardStackStyleInterpolator的,这个方法集的路径也需要注意一下,在2.12.1版本之前, 该文件在react-navigation/src/views/StackView/中…...
STM8编程[TIM1多路PWM输出选项字节(Option Byte)操作和IO复用]
TIM1多路PWM输出选项字节(Option Byte)操作和IO复用 本文摘录于:https://blog.csdn.net/freeape/article/details/47008033只是做学习备份之用,绝无抄袭之意,有疑惑请联系本人! 代码上要使用TIME1输出3路PWM,代码如下: void tim…...
Java算法_ 反转二叉树(LeetCode_Hot100)
题目描述:给你一棵二叉树的根节点 ,翻转这棵二叉树,并返回其根节点。root。 获得更多?算法思路:代码文档,算法解析的私得。 运行效果 完整代码 /*** 2 * Author: LJJ* 3 * Date: 2023/8/16 13:18* 4*/public class In…...
C/C++ 标准模版库STL(持续更新版)
标准模版库STL 目录 算法库 栈 队列 向量 映射 列表 双向链表 集合 Iterator 送代器 <algorithm> 算法库 max, min 用于找出一组值中的最大值和最小值 swap 用于交换两个变量的值 sort 用于对一个范围内的元素进行排序 lower_bound, upper_bound 用于在已排序的容器…...
ARM(实验二)
uart4.h #ifndef __H__ #define __H__#include "stm32mp1xx_rcc.h" #include "stm32mp1xx_gpio.h" #include "stm32mp1xx_uart.h"//RCC/GPIO/UART4章节初始化 void hal_uart4_init();//发送一个字符函数 void hal_put_char(const char str);//发…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...
uniapp手机号一键登录保姆级教程(包含前端和后端)
目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...
通过MicroSip配置自己的freeswitch服务器进行调试记录
之前用docker安装的freeswitch的,启动是正常的, 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...
智能职业发展系统:AI驱动的职业规划平台技术解析
智能职业发展系统:AI驱动的职业规划平台技术解析 引言:数字时代的职业革命 在当今瞬息万变的就业市场中,传统的职业规划方法已无法满足个人和企业的需求。据统计,全球每年有超过2亿人面临职业转型困境,而企业也因此遭…...
字符串哈希+KMP
P10468 兔子与兔子 #include<bits/stdc.h> using namespace std; typedef unsigned long long ull; const int N 1000010; ull a[N], pw[N]; int n; ull gethash(int l, int r){return a[r] - a[l - 1] * pw[r - l 1]; } signed main(){ios::sync_with_stdio(false), …...
