当前位置: 首页 > news >正文

深入浅出Pytorch函数——torch.nn.Linear

分类目录:《深入浅出Pytorch函数》总目录


对输入数据做线性变换 y = x A T + b y=xA^T+b y=xAT+b

语法

torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)

参数

  • in_features:[int] 每个输入样本的大小
  • out_features :[int] 每个输出样本的大小
  • bias:[bool] 若设置为False,则该层不会学习偏置项目,默认值为True

变量形状

  • 输入变量: ( N , in_features ) (N, \text{in\_features}) (N,in_features)
  • 输出变量: ( N , out_features ) (N, \text{out\_features}) (N,out_features)

变量

  • weight:模块中形状为 ( out_features , in_features ) (\text{out\_features}, \text{in\_features}) (out_features,in_features)的可学习权重项
  • bias :模块中形状为 out_features \text{out\_features} out_features的可学习偏置项

实例

>>> m = nn.Linear(20, 30)
>>> input = torch.randn(128, 20)
>>> output = m(input)
>>> print(output.size())
torch.Size([128, 30])

函数实现

class Linear(Module):r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`This module supports :ref:`TensorFloat32<tf32_on_ampere>`.On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.Args:in_features: size of each input sampleout_features: size of each output samplebias: If set to ``False``, the layer will not learn an additive bias.Default: ``True``Shape:- Input: :math:`(*, H_{in})` where :math:`*` means any number ofdimensions including none and :math:`H_{in} = \text{in\_features}`.- Output: :math:`(*, H_{out})` where all but the last dimensionare the same shape as the input and :math:`H_{out} = \text{out\_features}`.Attributes:weight: the learnable weights of the module of shape:math:`(\text{out\_features}, \text{in\_features})`. The values areinitialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where:math:`k = \frac{1}{\text{in\_features}}`bias:   the learnable bias of the module of shape :math:`(\text{out\_features})`.If :attr:`bias` is ``True``, the values are initialized from:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where:math:`k = \frac{1}{\text{in\_features}}`Examples::>>> m = nn.Linear(20, 30)>>> input = torch.randn(128, 20)>>> output = m(input)>>> print(output.size())torch.Size([128, 30])"""__constants__ = ['in_features', 'out_features']in_features: intout_features: intweight: Tensordef __init__(self, in_features: int, out_features: int, bias: bool = True,device=None, dtype=None) -> None:factory_kwargs = {'device': device, 'dtype': dtype}super().__init__()self.in_features = in_featuresself.out_features = out_featuresself.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs))if bias:self.bias = Parameter(torch.empty(out_features, **factory_kwargs))else:self.register_parameter('bias', None)self.reset_parameters()def reset_parameters(self) -> None:# Setting a=sqrt(5) in kaiming_uniform is the same as initializing with# uniform(-1/sqrt(in_features), 1/sqrt(in_features)). For details, see# https://github.com/pytorch/pytorch/issues/57109init.kaiming_uniform_(self.weight, a=math.sqrt(5))if self.bias is not None:fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0init.uniform_(self.bias, -bound, bound)def forward(self, input: Tensor) -> Tensor:return F.linear(input, self.weight, self.bias)def extra_repr(self) -> str:return 'in_features={}, out_features={}, bias={}'.format(self.in_features, self.out_features, self.bias is not None)

相关文章:

深入浅出Pytorch函数——torch.nn.Linear

分类目录&#xff1a;《深入浅出Pytorch函数》总目录 对输入数据做线性变换 y x A T b yxA^Tb yxATb 语法 torch.nn.Linear(in_features, out_features, biasTrue, deviceNone, dtypeNone)参数 in_features&#xff1a;[int] 每个输入样本的大小out_features &#xff1a;…...

Vue3.2+TS的defineExpose的应用

defineExpose通俗来讲&#xff0c;其实就是讲子组件的方法或者数据&#xff0c;暴露给父组件进行使用&#xff0c;这样对组件的封装使用&#xff0c;有很大的帮助&#xff0c;那么defineExpose应该如何使用&#xff0c;下面我来用一些实际的代码&#xff0c;带大家快速学会defi…...

牛客网Python入门103题练习|【08--元组】

⭐NP62 运动会双人项目 描述 牛客运动会上有一项双人项目&#xff0c;因为报名成功以后双人成员不允许被修改&#xff0c;因此请使用元组&#xff08;tuple&#xff09;进行记录。先输入两个人的名字&#xff0c;请输出他们报名成功以后的元组。 输入描述&#xff1a; 第一…...

Jenkins改造—nginx配置鉴权

先kill掉8082的端口进程 netstat -natp | grep 8082 kill 10256 1、下载nginx nginx安装 EPEL 仓库中有 Nginx 的安装包。如果你还没有安装过 EPEL&#xff0c;可以通过运行下面的命令来完成安装 sudo yum install epel-release 输入以下命令来安装 Nginx sudo yum inst…...

(二)VisionOS平台概述

2.VisionOS平台概述 1. VisionOS平台概述 Unity 对VisionOS的支持将 Unity 编辑器和运行时引擎的全部功能与RealityKit提供的渲染功能结合起来。Unity 的核心功能&#xff08;包括脚本、物理、动画混合、AI、场景管理等&#xff09;无需修改即可支持。这允许游戏和应用程序逻…...

菜单中的类似iOS中开关的样式

背景是我们有需求&#xff0c;做类似ios中开关的按钮。github上有一些开源项目&#xff0c;比如 SwitchButton&#xff0c; 但是这个项目中提供了很多选项&#xff0c;并且实际使用中会出现一些奇怪的问题。 我调整了下代码&#xff0c;把无关的功能都给删了&#xff0c;保留核…...

Vue 2 动态组件和异步组件

先阅读 【Vue 2 组件基础】中的初步了解动态组件。 动态组件与keep-alive 我们知道动态组件使用is属性和component标签结合来切换不同组件。 下面给出一个示例&#xff1a; <!DOCTYPE html> <html><head><title>Vue 动态组件</title><scri…...

MongoDB升级经历(4.0.23至5.0.19)

MongoDB从4.0.23至5.0.19升级经历 引子&#xff1a;为了解决MongoDB的两个漏洞决定把MongoDB升级至最新版本&#xff0c;期间也踩了不少坑&#xff0c;在这里分享出来供大家学习与避坑~ 1、MongoDB的两个漏洞 漏洞1&#xff1a;MongoDB Server 安全漏洞(CVE-2021-20330) 漏洞2…...

iPhone上的个人热点丢失了怎么办?如何修复iPhone上不见的个人热点?

个人热点功能可将我们的iPhone手机转变为 Wi-Fi 热点&#xff0c;有了Wi-Fi 热点后就可以与附近的其他设备共享其互联网连接。 一般情况下&#xff0c;个人热点打开就可以使用&#xff0c;但也有部分用户在升级系统或越狱后发现 iPhone 的个人热点消失了。 iPhone上的个人热点…...

AI 媒人:为什么图形神经网络比 MLP 更好?

一、说明 G拉夫神经网络&#xff08;GNN&#xff09;&#xff01;想象他们是人工智能世界的媒人&#xff0c;通过探索他们的联系&#xff0c;不知疲倦地帮助数据点找到朋友和人气。数字派对上的终极僚机。 现在&#xff0c;为什么这些GNN如此重要&#xff0c;你问&#xff1f;好…...

信息学奥赛一本通 1984:【19CSPJ普及组】纪念品 | 洛谷 P5662 [CSP-J2019] 纪念品

【题目链接】 ybt 1984&#xff1a;【19CSPJ普及组】纪念品 洛谷 P5662 [CSP-J2019] 纪念品 【题目考点】 1. 动态规划&#xff1a;完全背包 【解题思路】 由于小伟每天都可以买卖物品无限次&#xff0c;我们可以假想每天开始时&#xff0c;他把所有的商品都卖出&#xff…...

JVM——JVM参数指南

文章目录 1.概述2.堆内存相关2.1.显式指定堆内存–Xms和-Xmx2.2.显式新生代内存(Young Ceneration)2.3.显示指定永久代/元空间的大小 3.垃圾收集相关3.1.垃圾回收器3.2.GC记录 1.概述 在本篇文章中&#xff0c;你将掌握最常用的 JVM 参数配置。如果对于下面提到了一些概念比如…...

马上七夕到了,用各种编程语言实现10种浪漫表白方式

目录 1. 直接表白&#xff1a;2. 七夕节表白&#xff1a;3. 猜心游戏&#xff1a;4. 浪漫诗句&#xff1a;5. 爱的方程式&#xff1a;6. 爱心Python&#xff1a;7. 心形图案JavaScript 代码&#xff1a;8. 心形并显示表白信息HTML 页面&#xff1a;9. Java七夕快乐&#xff1a;…...

Spring Clould 注册中心 - Eureka,Nacos

视频地址&#xff1a;微服务&#xff08;SpringCloudRabbitMQDockerRedis搜索分布式&#xff09; Eureka 微服务技术栈导学&#xff08;P1、P2&#xff09; 微服务涉及的的知识 认识微服务-服务架构演变&#xff08;P3、P4&#xff09; 总结&#xff1a; 认识微服务-微服务技…...

使用appuploader工具发布证书和描述性文件教程

使用APPuploader工具发布证书和描述性文件教程 之前用AppCan平台开发了一个应用&#xff0c;平台可以同时生成安卓版和苹果版&#xff0c;想着也把这应用上架到App Store试试&#xff0c;于是找同学借了个苹果开发者账号&#xff0c;但没那么简单&#xff0c;还要用到Mac电脑的…...

【面试八股文】每日一题:谈谈你对IO的理解

谈谈你对IO的理解 每日一题-Java核心-谈谈你对对IO的理解【面试八股文】 1.Java基础知识 Java IO&#xff08;Input/Output&#xff09;是Java编程语言中用于处理输入和输出的一组类和接口。它提供了一种在Java程序中读取和写入数据的方法。 Java IO包括两个主要的部分&#x…...

200. 岛屿数量

思路&#xff1a;遍历整个矩阵&#xff0c;对每个格子执行以下操作&#xff1a; 如果格子是陆地&#xff08;‘1’&#xff09;&#xff0c;则将其标记为已访问&#xff08;‘0’&#xff09;&#xff0c;并从当前位置开始进行深度优先搜索&#xff0c;将与当前格子相邻的陆地都…...

【LeetCode】581.最短无序连续子数组

题目 给你一个整数数组 nums &#xff0c;你需要找出一个 连续子数组 &#xff0c;如果对这个子数组进行升序排序&#xff0c;那么整个数组都会变为升序排序。 请你找出符合题意的 最短 子数组&#xff0c;并输出它的长度。 示例 1&#xff1a; 输入&#xff1a;nums [2,6…...

曲面(弧面、柱面)展平(拉直)瓶子标签识别ocr

瓶子或者柱面在做字符识别的时候由于变形&#xff0c;识别效果是很不好的 或者是检测瓶子表面缺陷的时候效果也没有展平的好 下面介绍两个项目&#xff0c;关于曲面&#xff08;弧面、柱面&#xff09;展平&#xff08;拉直&#xff09; 项目一&#xff1a;通过识别曲面的6个点…...

知识继承概述

文章目录 知识继承第一章 知识继承概述1.背景介绍第一页 背景第二页 大模型训练成本示例第三页 知识继承的动机 2.知识继承的主要方法 第二章 基于知识蒸馏的知识继承预页 方法概览 1.知识蒸馏概述第一页 知识蒸馏概述第二页 知识蒸馏第三页 什么是知识第四页 知识蒸馏的核心目…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

Linux中《基础IO》详细介绍

目录 理解"文件"狭义理解广义理解文件操作的归类认知系统角度文件类别 回顾C文件接口打开文件写文件读文件稍作修改&#xff0c;实现简单cat命令 输出信息到显示器&#xff0c;你有哪些方法stdin & stdout & stderr打开文件的方式 系统⽂件I/O⼀种传递标志位…...

高防服务器价格高原因分析

高防服务器的价格较高&#xff0c;主要是由于其特殊的防御机制、硬件配置、运营维护等多方面的综合成本。以下从技术、资源和服务三个维度详细解析高防服务器昂贵的原因&#xff1a; 一、硬件与技术投入 大带宽需求 DDoS攻击通过占用大量带宽资源瘫痪目标服务器&#xff0c;因此…...

渗透实战PortSwigger Labs指南:自定义标签XSS和SVG XSS利用

阻止除自定义标签之外的所有标签 先输入一些标签测试&#xff0c;说是全部标签都被禁了 除了自定义的 自定义<my-tag onmouseoveralert(xss)> <my-tag idx onfocusalert(document.cookie) tabindex1> onfocus 当元素获得焦点时&#xff08;如通过点击或键盘导航&…...

Copilot for Xcode (iOS的 AI辅助编程)

Copilot for Xcode 简介Copilot下载与安装 体验环境要求下载最新的安装包安装登录系统权限设置 AI辅助编程生成注释代码补全简单需求代码生成辅助编程行间代码生成注释联想 代码生成 总结 简介 尝试使用了Copilot&#xff0c;它能根据上下文补全代码&#xff0c;快速生成常用…...

20250609在荣品的PRO-RK3566开发板的Android13下解决串口可以执行命令但是脚本执行命令异常的问题

20250609在荣品的PRO-RK3566开发板的Android13下解决串口可以执行命令但是脚本执行命令异常的问题 2025/6/9 20:54 缘起&#xff0c;为了跨网段推流&#xff0c;千辛万苦配置好了网络参数。 但是命令iptables -t filter -F tetherctrl_FORWARD可以在调试串口/DEBUG口正确执行。…...

篇章一 论坛系统——前置知识

目录 1.软件开发 1.1 软件的生命周期 1.2 面向对象 1.3 CS、BS架构 1.CS架构​编辑 2.BS架构 1.4 软件需求 1.需求分类 2.需求获取 1.5 需求分析 1. 工作内容 1.6 面向对象分析 1.OOA的任务 2.统一建模语言UML 3. 用例模型 3.1 用例图的元素 3.2 建立用例模型 …...

简单聊下阿里云DNS劫持事件

阿里云域名被DNS劫持事件 事件总结 根据ICANN规则&#xff0c;域名注册商&#xff08;Verisign&#xff09;认定aliyuncs.com域名下的部分网站被用于非法活动&#xff08;如传播恶意软件&#xff09;&#xff1b;顶级域名DNS服务器将aliyuncs.com域名的DNS记录统一解析到shado…...