当前位置: 首页 > news >正文

Greiner–Hormann裁剪算法深度探索:C++实现与应用案例

介绍

在计算几何中,裁剪是一个核心的主题。特别是,多边形裁剪已经被广泛地应用于计算机图形学,地理信息系统和许多其他领域。Greiner-Hormann裁剪算法是其中之一,提供了一个高效的方式来计算两个多边形的交集、并集等。在本文中,我们将深入探讨这一算法,并为您提供一个基于C++的实现。


算法概述

Greiner-Hormann算法基于边界交点的概念,即两个多边形的交点。算法的关键思想是找到这些交点,并根据需要合并多边形的顶点。

  1. 找到所有的交点:遍历多边形A和B的所有边,找到它们的交点。
  2. 排序交点:按照它们在多边形边上的位置对交点进行排序。
  3. 连接交点:使用链接交点来形成新的多边形。
  4. 得到结果多边形:得到交集、并集或差集,取决于所需的操作。

C++实现

为了简单起见,我们假设点是一个简单的结构,并有一个函数来计算两条线段的交点。

struct Point {double x, y;Point(double x = 0, double y = 0) : x(x), y(y) {}
};bool findIntersection(Point p1, Point q1, Point p2, Point q2, Point &intersec) {// ... (交点的计算代码)
}

为了表示多边形,我们使用点的列表:

using Polygon = std::vector<Point>;

现在,让我们开始寻找两个多边形之间的所有交点。

std::vector<Point> findIntersections(const Polygon &polyA, const Polygon &polyB) {std::vector<Point> intersections;for(size_t i = 0; i < polyA.size(); i++) {Point p1 = polyA[i];Point q1 = (i == polyA.size() - 1) ? polyA[0] : polyA[i + 1];for(size_t j = 0; j < polyB.size(); j++) {Point p2 = polyB[j];Point q2 = (j == polyB.size() - 1) ? polyB[0] : polyB[j + 1];Point intersec;if(findIntersection(p1, q1, p2, q2, intersec)) {intersections.push_back(intersec);}}}return intersections;
}

此代码片段首先初始化一个空的交点列表。然后,它遍历polyApolyB的每条边,使用findIntersection函数来确定它们是否有交点。如果找到交点,它会添加到交点列表中。

排序交点

为了确保算法的正确性,我们需要按照它们在多边形上的位置对交点进行排序。这确保了当我们形成新的多边形时,交点被正确地处理。

void sortIntersections(Polygon &poly, std::vector<Point> &intersections) {std::sort(intersections.begin(), intersections.end(), [&poly](const Point &a, const Point &b) -> bool {// 为每个交点找到其在多边形上的位置size_t posA = std::distance(poly.begin(), std::find(poly.begin(), poly.end(), a));size_t posB = std::distance(poly.begin(), std::find(poly.begin(), poly.end(), b));return posA < posB;});
}

此函数接受多边形和其交点列表作为参数,然后按照交点在多边形上的位置进行排序。

连接交点以形成新的多边形

一旦我们有了排序后的交点,我们就可以开始构造新的多边形。

Polygon constructNewPolygon(const Polygon &polyA, const Polygon &polyB, const std::vector<Point> &intersections) {Polygon result;// 使用一个标记数组来跟踪哪些交点已经被处理std::vector<bool> visited(intersections.size(), false);// 开始于多边形A的第一个点result.push_back(polyA[0]);for (size_t i = 1; i <= polyA.size(); i++) {Point current = (i == polyA.size()) ? polyA[0] : polyA[i];// 查找是否有交点auto it = std::find(intersections.begin(), intersections.end(), current);if (it != intersections.end() && !visited[std::distance(intersections.begin(), it)]) {// 标记交点为已访问visited[std::distance(intersections.begin(), it)] = true;// 将交点添加到结果多边形中result.push_back(*it);// 转到另一个多边形并遍历其边,直到遇到另一个交点const Polygon &otherPoly = (polyA == polyB) ? polyB : polyA;size_t j = std::distance(otherPoly.begin(), std::find(otherPoly.begin(), otherPoly.end(), *it));do {j = (j + 1) % otherPoly.size();result.push_back(otherPoly[j]);} while (std::find(intersections.begin(), intersections.end(), otherPoly[j]) == intersections.end());} else {result.push_back(current);}}return result;
}

这个函数首先初始化了一个空的多边形和一个标记数组,用于跟踪哪些交点已经被处理。然后,它遍历polyA的每个顶点,并检查它是否是一个交点。如果是,并且还没有被访问过,它将开始遍历polyB,直到找到另一个交点为止。

结论和进一步的应用

从上面的C++实现中,我们可以看到Greiner-Hormann裁剪算法是如何工作的。这种算法的优点是它对于复杂的多边形也能高效工作,而且它的理论基础使得它可以很容易地适应各种应用场景。

例如,此算法不仅限于2D平面上的裁剪。通过在三维空间中考虑多边形,或者在N维空间中进行一些扩展,我们可以将此方法用于更高维度的空间。

此外,这种算法在图形渲染、地理信息系统、碰撞检测等领域都有应用。其准确性和效率使它成为处理这些问题的理想选择。

总结

Greiner-Hormann裁剪算法为我们提供了一个强大的工具,可以用来解决多边形裁剪中的各种问题。不仅如此,由于其底层原理和结构的普遍性,它可以被扩展到多种不同的应用中。上面提供的C++实现只是开始,您可以根据需要对其进行扩展或修改,使其适应您的特定需求。

感谢您的耐心阅读!希望这篇文章为您提供了有价值的信息和启示。

相关文章:

Greiner–Hormann裁剪算法深度探索:C++实现与应用案例

介绍 在计算几何中&#xff0c;裁剪是一个核心的主题。特别是&#xff0c;多边形裁剪已经被广泛地应用于计算机图形学&#xff0c;地理信息系统和许多其他领域。Greiner-Hormann裁剪算法是其中之一&#xff0c;提供了一个高效的方式来计算两个多边形的交集、并集等。在本文中&…...

Automatically Correcting Large Language Models

本文是大模型相关领域的系列文章&#xff0c;针对《Automatically Correcting Large Language Models: Surveying the landscape of diverse self-correction strategies》的翻译。 自动更正大型语言模型&#xff1a;综述各种自我更正策略的前景 摘要1 引言2 自动反馈校正LLM的…...

【学习FreeRTOS】第8章——FreeRTOS列表和列表项

1.列表和列表项的简介 列表是 FreeRTOS 中的一个数据结构&#xff0c;概念上和链表有点类似&#xff0c;列表被用来跟踪 FreeRTOS中的任务。列表项就是存放在列表中的项目。 列表相当于链表&#xff0c;列表项相当于节点&#xff0c;FreeRTOS 中的列表是一个双向环形链表列表的…...

分布式图数据库 NebulaGraph v3.6.0 正式发布,强化全文索引能力

本次 v3.6.0 版本&#xff0c;主要强化全文索引能力&#xff0c;以及优化部分场景下的 MATCH 性能。 强化 强化增强全文索引功能&#xff0c;具体 pr 参见&#xff1a;#5567、#5575、#5577、#5580、#5584、#5587 优化 支持使用 MATCH 子句检索 VID 或属性索引时使用变量&am…...

在 ubuntu 18.04 上使用源码升级 OpenSSH_7.6p1到 OpenSSH_9.3p1

1、检查系统已安装的当前 SSH 版本 使用命令 ssh -V 查看当前 ssh 版本&#xff0c;输出如下&#xff1a; OpenSSH_7.6p1 Ubuntu-4ubuntu0.7, OpenSSL 1.0.2n 7 Dec 20172、安装依赖&#xff0c;依次执行以下命令 sudo apt update sudo apt install build-essential zlib1g…...

python中可以处理word文档的模块:docx模块

前言 大家早好、午好、晚好吖 ❤ ~欢迎光临本文章 话不多说&#xff0c;直接开搞&#xff0c;如果有什么疑惑/资料需要的可以点击文章末尾名片领取源码 一.docx模块 Python可以利用python-docx模块处理word文档&#xff0c;处理方式是面向对象的。 也就是说python-docx模块…...

TikTok或将于8月底关闭半闭环、速卖通或将推出“半托管”模式

《出海周报》是运营坛为外贸企业主和外贸人独家打造的重要资讯栏目&#xff0c;聚焦企业出海、海外市场动态、海外监管政策等方面&#xff0c;以简捷的方式&#xff0c;提升读者获取资讯的效率。 接下来运营坛为大家带来第15期出海周报&#xff0c;快来看看这周国内外市场发生了…...

《凤凰架构》第二章——访问远程服务

前言 这章挺难的&#xff0c;感觉离我比较远&#xff0c;不太好懂&#xff0c;简单记录吧。 这章主要讲访问远程服务&#xff0c;主要对比了RPC和REST的区别&#xff0c;可以结合知乎上的文章《既然有 HTTP 请求&#xff0c;为什么还要用 RPC 调用&#xff1f;》 这篇文章进行…...

【Diffusion】李宏毅2023机器学习Diffusion笔记

文章目录 1 想法概述2 实际过程阶段1 Add Noise阶段2 Denoise 3 数学原理4 为什么推理时要额外加入noise5 一些不知道对不对的Summary 1 想法概述 从一张充满噪声的图中不断denoise&#xff0c;最终得到一张clear的图片。为了确定当前图片中噪声占比的大小&#xff0c;同时输入…...

CloudEvents—云原生事件规范

我们的系统中或多或少都会用到如下两类业务技术&#xff1a; 异步任务&#xff0c;用于降低接口时延或削峰&#xff0c;提升用户体验&#xff0c;降低系统并发压力&#xff1b;通知类RPC&#xff0c;用于微服务间状态变更&#xff0c;用户行为的联动等场景&#xff1b; 以上两种…...

神经网络基础-神经网络补充概念-51-局部最优问题

概念 局部最优问题是在优化问题中常见的一个挑战&#xff0c;特别是在高维、非凸、非线性问题中。局部最优问题指的是算法在优化过程中陷入了一个局部最小值点&#xff0c;而不是全局最小值点。这会导致优化算法在某个局部区域停止&#xff0c;而无法找到更好的解。 解决方案…...

深度学习中,什么是batch-size?如何设置?

什么是batch-size? batch-size 是深度学习模型在训练过程中一次性输入给模型的样本数量。它在训练过程中具有重要的意义&#xff0c;影响着训练速度、内存使用以及模型的稳定性等方面。 以下是 batch-size 大小的一些影响和意义&#xff1a; 训练速度&#xff1a;较大的 bat…...

[保研/考研机试] KY26 10进制 VS 2进制 清华大学复试上机题 C++实现

题目链接&#xff1a; 10进制 VS 2进制http://www.nowcoder.com/share/jump/437195121691738172415 描述 对于一个十进制数A&#xff0c;将A转换为二进制数&#xff0c;然后按位逆序排列&#xff0c;再转换为十进制数B&#xff0c;我们称B为A的二进制逆序数。 例如对于十进制…...

JSP-学习笔记

文章目录 1.JSP介绍2 JSP快速入门3 JSP 脚本3.1 JSP脚本案例3.2 JSP缺点 4 EL表达式4.1 快速入门案例 5. JSTL标签6. MVC模式和三层架构6.1 MVC6.2 三层架构 7. 案例-基于MVC和三层架构实现商品表的增删改查 1.JSP介绍 概念 JSP&#xff08;JavaServer Pages&#xff09;是一种…...

Golang协程,通道详解

进程、线程以及并行、并发 关于进程和线程 进程&#xff08;Process&#xff09;就是程序在操作系统中的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff0c;进程是一个动态概念&#xff0c;是程序在执行过程中分配和管理资源的基本单位&#xff0c;每一…...

unity 之 Vector 数据类型

文章目录 Vector 1Vector 2Vector 3Vector 4 Vector 1 在Unity中&#xff0c;Vector1 并不是一个常见的向量类型。 如果您需要表示标量&#xff08;单个值&#xff09;或者只需要一维的数据&#xff0c;通常会直接使用浮点数&#xff08;float&#xff09;或整数&#xff08;in…...

私密数据采集:隧道爬虫IP技术的保密性能力探究

作为一名专业的爬虫程序员&#xff0c;今天要和大家分享一个关键的技术&#xff0c;它能够为私密数据采集提供保密性能力——隧道爬虫IP技术。如果你在进行敏感数据采集任务时需要保护数据的私密性&#xff0c;那么这项技术将是你的守护神。 在进行私密数据采集任务时&#xff…...

使用git rebase 之后的如何恢复到原始状态

我们常常喜欢使用git rebase去切换分支提交代码,操作流程就是: 先切换分支:比如当前是master 我们修改了一堆代码产生一个commit id :5555555567777 那么我们常常比较懒就直接切换了:git checkout dev 然后呢?使用命令git rebase 5555555567777,想把这笔修改提交到d…...

matlab相机标定知识整理

matlab相机标定知识整理 单目相机标定 单目相机标定 内参矩阵&#xff1a;cameraParams.Intrinsics.K 或者 cameraParams.K旋转矩阵&#xff1a;cameraParams.RotationMatrices 有待确定 cameraParams.RotationVectors平移矩阵&#xff1a;cameraParams.TranslationVectors径向…...

win11安装ubuntu 子系统安装过程及注意事项

第一步 &#xff1a;安装系统必须组件 由于子系统是系统自带组件&#xff0c;需要安装软件支持 第二步&#xff1a;应用商店安装 ubuntu 编辑 编辑 这个时候打开会报错 第三步&#xff0c;运行linux子系统 选择Windows PowerShell 以管理员身份运行&#xff09; 输入&#…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

腾讯云V3签名

想要接入腾讯云的Api&#xff0c;必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口&#xff0c;但总是卡在签名这一步&#xff0c;最后放弃选择SDK&#xff0c;这次终于自己代码实现。 可能腾讯云翻新了接口文档&#xff0c;现在阅读起来&#xff0c;清晰了很多&…...

「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案

在移动互联网营销竞争白热化的当下&#xff0c;推客小程序系统凭借其裂变传播、精准营销等特性&#xff0c;成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径&#xff0c;助力开发者打造具有市场竞争力的营销工具。​ 一、系统核心功能架构&…...

在树莓派上添加音频输入设备的几种方法

在树莓派上添加音频输入设备可以通过以下步骤完成&#xff0c;具体方法取决于设备类型&#xff08;如USB麦克风、3.5mm接口麦克风或HDMI音频输入&#xff09;。以下是详细指南&#xff1a; 1. 连接音频输入设备 USB麦克风/声卡&#xff1a;直接插入树莓派的USB接口。3.5mm麦克…...

DiscuzX3.5发帖json api

参考文章&#xff1a;PHP实现独立Discuz站外发帖(直连操作数据库)_discuz 发帖api-CSDN博客 简单改造了一下&#xff0c;适配我自己的需求 有一个站点存在多个采集站&#xff0c;我想通过主站拿标题&#xff0c;采集站拿内容 使用到的sql如下 CREATE TABLE pre_forum_post_…...

Linux安全加固:从攻防视角构建系统免疫

Linux安全加固:从攻防视角构建系统免疫 构建坚不可摧的数字堡垒 引言:攻防对抗的新纪元 在日益复杂的网络威胁环境中,Linux系统安全已从被动防御转向主动免疫。2023年全球网络安全报告显示,高级持续性威胁(APT)攻击同比增长65%,平均入侵停留时间缩短至48小时。本章将从…...