Greiner–Hormann裁剪算法深度探索:C++实现与应用案例
介绍
在计算几何中,裁剪是一个核心的主题。特别是,多边形裁剪已经被广泛地应用于计算机图形学,地理信息系统和许多其他领域。Greiner-Hormann裁剪算法是其中之一,提供了一个高效的方式来计算两个多边形的交集、并集等。在本文中,我们将深入探讨这一算法,并为您提供一个基于C++的实现。
算法概述
Greiner-Hormann算法基于边界交点的概念,即两个多边形的交点。算法的关键思想是找到这些交点,并根据需要合并多边形的顶点。
- 找到所有的交点:遍历多边形A和B的所有边,找到它们的交点。
- 排序交点:按照它们在多边形边上的位置对交点进行排序。
- 连接交点:使用链接交点来形成新的多边形。
- 得到结果多边形:得到交集、并集或差集,取决于所需的操作。
C++实现
为了简单起见,我们假设点是一个简单的结构,并有一个函数来计算两条线段的交点。
struct Point {double x, y;Point(double x = 0, double y = 0) : x(x), y(y) {}
};bool findIntersection(Point p1, Point q1, Point p2, Point q2, Point &intersec) {// ... (交点的计算代码)
}
为了表示多边形,我们使用点的列表:
using Polygon = std::vector<Point>;
现在,让我们开始寻找两个多边形之间的所有交点。
std::vector<Point> findIntersections(const Polygon &polyA, const Polygon &polyB) {std::vector<Point> intersections;for(size_t i = 0; i < polyA.size(); i++) {Point p1 = polyA[i];Point q1 = (i == polyA.size() - 1) ? polyA[0] : polyA[i + 1];for(size_t j = 0; j < polyB.size(); j++) {Point p2 = polyB[j];Point q2 = (j == polyB.size() - 1) ? polyB[0] : polyB[j + 1];Point intersec;if(findIntersection(p1, q1, p2, q2, intersec)) {intersections.push_back(intersec);}}}return intersections;
}
此代码片段首先初始化一个空的交点列表。然后,它遍历polyA和polyB的每条边,使用findIntersection函数来确定它们是否有交点。如果找到交点,它会添加到交点列表中。
排序交点
为了确保算法的正确性,我们需要按照它们在多边形上的位置对交点进行排序。这确保了当我们形成新的多边形时,交点被正确地处理。
void sortIntersections(Polygon &poly, std::vector<Point> &intersections) {std::sort(intersections.begin(), intersections.end(), [&poly](const Point &a, const Point &b) -> bool {// 为每个交点找到其在多边形上的位置size_t posA = std::distance(poly.begin(), std::find(poly.begin(), poly.end(), a));size_t posB = std::distance(poly.begin(), std::find(poly.begin(), poly.end(), b));return posA < posB;});
}
此函数接受多边形和其交点列表作为参数,然后按照交点在多边形上的位置进行排序。
连接交点以形成新的多边形
一旦我们有了排序后的交点,我们就可以开始构造新的多边形。
Polygon constructNewPolygon(const Polygon &polyA, const Polygon &polyB, const std::vector<Point> &intersections) {Polygon result;// 使用一个标记数组来跟踪哪些交点已经被处理std::vector<bool> visited(intersections.size(), false);// 开始于多边形A的第一个点result.push_back(polyA[0]);for (size_t i = 1; i <= polyA.size(); i++) {Point current = (i == polyA.size()) ? polyA[0] : polyA[i];// 查找是否有交点auto it = std::find(intersections.begin(), intersections.end(), current);if (it != intersections.end() && !visited[std::distance(intersections.begin(), it)]) {// 标记交点为已访问visited[std::distance(intersections.begin(), it)] = true;// 将交点添加到结果多边形中result.push_back(*it);// 转到另一个多边形并遍历其边,直到遇到另一个交点const Polygon &otherPoly = (polyA == polyB) ? polyB : polyA;size_t j = std::distance(otherPoly.begin(), std::find(otherPoly.begin(), otherPoly.end(), *it));do {j = (j + 1) % otherPoly.size();result.push_back(otherPoly[j]);} while (std::find(intersections.begin(), intersections.end(), otherPoly[j]) == intersections.end());} else {result.push_back(current);}}return result;
}
这个函数首先初始化了一个空的多边形和一个标记数组,用于跟踪哪些交点已经被处理。然后,它遍历polyA的每个顶点,并检查它是否是一个交点。如果是,并且还没有被访问过,它将开始遍历polyB,直到找到另一个交点为止。
结论和进一步的应用
从上面的C++实现中,我们可以看到Greiner-Hormann裁剪算法是如何工作的。这种算法的优点是它对于复杂的多边形也能高效工作,而且它的理论基础使得它可以很容易地适应各种应用场景。
例如,此算法不仅限于2D平面上的裁剪。通过在三维空间中考虑多边形,或者在N维空间中进行一些扩展,我们可以将此方法用于更高维度的空间。
此外,这种算法在图形渲染、地理信息系统、碰撞检测等领域都有应用。其准确性和效率使它成为处理这些问题的理想选择。
总结
Greiner-Hormann裁剪算法为我们提供了一个强大的工具,可以用来解决多边形裁剪中的各种问题。不仅如此,由于其底层原理和结构的普遍性,它可以被扩展到多种不同的应用中。上面提供的C++实现只是开始,您可以根据需要对其进行扩展或修改,使其适应您的特定需求。
感谢您的耐心阅读!希望这篇文章为您提供了有价值的信息和启示。
相关文章:
Greiner–Hormann裁剪算法深度探索:C++实现与应用案例
介绍 在计算几何中,裁剪是一个核心的主题。特别是,多边形裁剪已经被广泛地应用于计算机图形学,地理信息系统和许多其他领域。Greiner-Hormann裁剪算法是其中之一,提供了一个高效的方式来计算两个多边形的交集、并集等。在本文中&…...
Automatically Correcting Large Language Models
本文是大模型相关领域的系列文章,针对《Automatically Correcting Large Language Models: Surveying the landscape of diverse self-correction strategies》的翻译。 自动更正大型语言模型:综述各种自我更正策略的前景 摘要1 引言2 自动反馈校正LLM的…...
【学习FreeRTOS】第8章——FreeRTOS列表和列表项
1.列表和列表项的简介 列表是 FreeRTOS 中的一个数据结构,概念上和链表有点类似,列表被用来跟踪 FreeRTOS中的任务。列表项就是存放在列表中的项目。 列表相当于链表,列表项相当于节点,FreeRTOS 中的列表是一个双向环形链表列表的…...
分布式图数据库 NebulaGraph v3.6.0 正式发布,强化全文索引能力
本次 v3.6.0 版本,主要强化全文索引能力,以及优化部分场景下的 MATCH 性能。 强化 强化增强全文索引功能,具体 pr 参见:#5567、#5575、#5577、#5580、#5584、#5587 优化 支持使用 MATCH 子句检索 VID 或属性索引时使用变量&am…...
在 ubuntu 18.04 上使用源码升级 OpenSSH_7.6p1到 OpenSSH_9.3p1
1、检查系统已安装的当前 SSH 版本 使用命令 ssh -V 查看当前 ssh 版本,输出如下: OpenSSH_7.6p1 Ubuntu-4ubuntu0.7, OpenSSL 1.0.2n 7 Dec 20172、安装依赖,依次执行以下命令 sudo apt update sudo apt install build-essential zlib1g…...
python中可以处理word文档的模块:docx模块
前言 大家早好、午好、晚好吖 ❤ ~欢迎光临本文章 话不多说,直接开搞,如果有什么疑惑/资料需要的可以点击文章末尾名片领取源码 一.docx模块 Python可以利用python-docx模块处理word文档,处理方式是面向对象的。 也就是说python-docx模块…...
TikTok或将于8月底关闭半闭环、速卖通或将推出“半托管”模式
《出海周报》是运营坛为外贸企业主和外贸人独家打造的重要资讯栏目,聚焦企业出海、海外市场动态、海外监管政策等方面,以简捷的方式,提升读者获取资讯的效率。 接下来运营坛为大家带来第15期出海周报,快来看看这周国内外市场发生了…...
《凤凰架构》第二章——访问远程服务
前言 这章挺难的,感觉离我比较远,不太好懂,简单记录吧。 这章主要讲访问远程服务,主要对比了RPC和REST的区别,可以结合知乎上的文章《既然有 HTTP 请求,为什么还要用 RPC 调用?》 这篇文章进行…...
【Diffusion】李宏毅2023机器学习Diffusion笔记
文章目录 1 想法概述2 实际过程阶段1 Add Noise阶段2 Denoise 3 数学原理4 为什么推理时要额外加入noise5 一些不知道对不对的Summary 1 想法概述 从一张充满噪声的图中不断denoise,最终得到一张clear的图片。为了确定当前图片中噪声占比的大小,同时输入…...
CloudEvents—云原生事件规范
我们的系统中或多或少都会用到如下两类业务技术: 异步任务,用于降低接口时延或削峰,提升用户体验,降低系统并发压力;通知类RPC,用于微服务间状态变更,用户行为的联动等场景; 以上两种…...
神经网络基础-神经网络补充概念-51-局部最优问题
概念 局部最优问题是在优化问题中常见的一个挑战,特别是在高维、非凸、非线性问题中。局部最优问题指的是算法在优化过程中陷入了一个局部最小值点,而不是全局最小值点。这会导致优化算法在某个局部区域停止,而无法找到更好的解。 解决方案…...
深度学习中,什么是batch-size?如何设置?
什么是batch-size? batch-size 是深度学习模型在训练过程中一次性输入给模型的样本数量。它在训练过程中具有重要的意义,影响着训练速度、内存使用以及模型的稳定性等方面。 以下是 batch-size 大小的一些影响和意义: 训练速度:较大的 bat…...
[保研/考研机试] KY26 10进制 VS 2进制 清华大学复试上机题 C++实现
题目链接: 10进制 VS 2进制http://www.nowcoder.com/share/jump/437195121691738172415 描述 对于一个十进制数A,将A转换为二进制数,然后按位逆序排列,再转换为十进制数B,我们称B为A的二进制逆序数。 例如对于十进制…...
JSP-学习笔记
文章目录 1.JSP介绍2 JSP快速入门3 JSP 脚本3.1 JSP脚本案例3.2 JSP缺点 4 EL表达式4.1 快速入门案例 5. JSTL标签6. MVC模式和三层架构6.1 MVC6.2 三层架构 7. 案例-基于MVC和三层架构实现商品表的增删改查 1.JSP介绍 概念 JSP(JavaServer Pages)是一种…...
Golang协程,通道详解
进程、线程以及并行、并发 关于进程和线程 进程(Process)就是程序在操作系统中的一次执行过程,是系统进行资源分配和调度的基本单位,进程是一个动态概念,是程序在执行过程中分配和管理资源的基本单位,每一…...
unity 之 Vector 数据类型
文章目录 Vector 1Vector 2Vector 3Vector 4 Vector 1 在Unity中,Vector1 并不是一个常见的向量类型。 如果您需要表示标量(单个值)或者只需要一维的数据,通常会直接使用浮点数(float)或整数(in…...
私密数据采集:隧道爬虫IP技术的保密性能力探究
作为一名专业的爬虫程序员,今天要和大家分享一个关键的技术,它能够为私密数据采集提供保密性能力——隧道爬虫IP技术。如果你在进行敏感数据采集任务时需要保护数据的私密性,那么这项技术将是你的守护神。 在进行私密数据采集任务时ÿ…...
使用git rebase 之后的如何恢复到原始状态
我们常常喜欢使用git rebase去切换分支提交代码,操作流程就是: 先切换分支:比如当前是master 我们修改了一堆代码产生一个commit id :5555555567777 那么我们常常比较懒就直接切换了:git checkout dev 然后呢?使用命令git rebase 5555555567777,想把这笔修改提交到d…...
matlab相机标定知识整理
matlab相机标定知识整理 单目相机标定 单目相机标定 内参矩阵:cameraParams.Intrinsics.K 或者 cameraParams.K旋转矩阵:cameraParams.RotationMatrices 有待确定 cameraParams.RotationVectors平移矩阵:cameraParams.TranslationVectors径向…...
win11安装ubuntu 子系统安装过程及注意事项
第一步 :安装系统必须组件 由于子系统是系统自带组件,需要安装软件支持 第二步:应用商店安装 ubuntu 编辑 编辑 这个时候打开会报错 第三步,运行linux子系统 选择Windows PowerShell 以管理员身份运行) 输入&#…...
idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...
C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
