当前位置: 首页 > news >正文

无脑入门pytorch系列(四)—— scatter_

本系列教程适用于没有任何pytorch的同学(简单的python语法还是要的),从代码的表层出发挖掘代码的深层含义,理解具体的意思和内涵。pytorch的很多函数看着非常简单,但是其中包含了很多内容,不了解其中的意思就只能【看懂代码】,无法【理解代码】。

目录

  • 官方定义
  • demo
  • one-hot

官方定义

torch.tensor.scatter_是PyTorch中的一个函数,用于将指定索引处的值替换为给定的值。

函数定义:

Tensor.scatter_(dim, index, src, reduce=None) → Tensor

官方解释:

  • 将张量src中的所有值写入索引张量中指定的index处的self。

  • 对于src中的每个值,它的输出索引由其在src中的索引(dimension != dim)和在index中对应的值(dimension = dim)指定。

非常难以理解,十分抽象,从我个人的角度来说就是:

  • 第一个参数dim表示维度,即在第几维度处理数据,保持其它维度不变。
  • reduce参数是一个可选参数,用于指定如何在执行散射(scatter)操作时对重复的索引值进行合并或聚合。
  • index则是需要填充的列的索引,即根据维度从src中取对应的值填充到tensor中去。

怎么映射的,比如一个一个3维张量:

self[index[i][j][k]][j][k] = src[i][j][k]  # if dim == 0
self[i][index[i][j][k]][k] = src[i][j][k]  # if dim == 1
self[i][j][index[i][j][k]] = src[i][j][k]  # if dim == 2

官方的文档如下,TORCH.TENSOR.SCATTER_:

image-20230818104242738

即使如此理解起来也是很复杂,下面从例子中去理解:

demo

下面是一个官方文档给出的例子:

import torchsrc = torch.Tensor([[-1.0276,  0.2673, -1.1752, -0.8823],[-0.6447, -0.8256,  0.1542, -0.4242]])
print(src)output = torch.zeros(2, 5)
index = torch.tensor([[3, 1, 2, 0], [1, 2, 0, 3]])output = output.scatter(1, index, src)
print(output)

输出的结果:

image-20230818142004545

我们一步步理解代码:

  1. 首先,定义了一个src张量,后续output即从src中取值。
  2. 其次,定义了output,其值为二行五列的全零张量,后续对output进行修改。
  3. 接着,定义了index,即从src取值的索引。
  4. 最后,根据index从src取值填充到output中,即完成操作。

那么具体是如何取值的呢?

首先,dim = 1,意味着从维度值为1的地方取值,维度值为0的地方不变,那就是:

self[i][index[i][j]] = src[i][j]  # if dim == 1

具体来说:

i = 0, j = 0时,output[0][index[0][0]] = src[0][0],因为index[0][0] = 3,所以output[0][3] = src[0][0] = -1.0276,这时候我们检查输出的output值,确实是-1.0276

同理:

i = 0, j = 1: output[0][index[0][1]] = output[0][1] = src[0][1] = 0.2673

i = 0, j = 2: output[0][index[0][2]] = output[0][2] = src[0][2] = -1.1752

one-hot

作者在学习该函数时实在遇到one-hot编码时遇到的,而该函数在one-hot中应用很广:

index = torch.tensor([[3], [2], [0], [1]])
onehot = torch.zeros(4, 4)
onehot.scatter_(1, index, 1)
print(onehot)

image-20230818143854519

相关文章:

无脑入门pytorch系列(四)—— scatter_

本系列教程适用于没有任何pytorch的同学(简单的python语法还是要的),从代码的表层出发挖掘代码的深层含义,理解具体的意思和内涵。pytorch的很多函数看着非常简单,但是其中包含了很多内容,不了解其中的意思…...

【Spring源码】Spring扩展点及顺序

Spring扩展点及顺序 01-调用BeanFactoryPostProcessor的构造器 02-调用了BeanFactoryPostProcessor的postProcessBeanFactory 03-调用了BeanPostProcessor构造器 04-调用InstantiationAwareBeanPostProcessor构造方法 05-调用了InstantiationAwareBeanPostProcessor接口的Befo…...

广州华锐互动:3D数字孪生开发编辑器助力企业高效开发数字孪生应用

3D数字孪生开发编辑器是一种新兴的技术,它可以帮助企业更好地管理和维护其物联网设备。这些工具可以帮助企业实现对设备的实时监控、故障排除和优化,从而提高生产效率和降低成本。 数字孪生系统是一种将物理世界与数字世界相结合的技术,它可以…...

【脚踢数据结构】图(纯享版)

(꒪ꇴ꒪ ),Hello我是祐言QAQ我的博客主页:C/C语言,Linux基础,ARM开发板,软件配置等领域博主🌍快上🚘,一起学习,让我们成为一个强大的攻城狮!送给自己和读者的…...

[leetcode] 707 设计链表

707. 设L计链表 中等 902 相关企业 你可以选择使用单链表或者双链表,设计并实现自己的链表。 单链表中的节点应该具备两个属性:val 和 next 。val 是当前节点的值,next 是指向下一个节点的指针/引用。 如果是双向链表,则还需…...

JIRA:项目管理的秘密武器

引言 在当今动态且快速变化的商业环境中,项目管理已经成为任何组织成功的关键因素。能够有效地管理项目,保证项目在设定的时间和预算内按照预期的质量完成,是每个项目经理的目标。为了实现这个目标,项目经理需要依赖强大的工具&a…...

ARM 作业1

一、思维导图 二、 1. 2. .text 文本段 .globl _start 声明_start:mov r0,#0mov r1,#0fun:cmp r1,#100bhi stopadd r0,r0,r1add r1,r1,#1b fun stop:b stop .end...

【解析postman工具的使用---基础篇】

postman前端请求详解 主界面1.常见类型的接口请求1.1 查询参数的接口请求1.1.1 什么是查询参数?1.1.2 postman如何请求 1.2 ❤表单类型的接口请求1.2.1 复习下http请求1.2.2❤ 什么是表单 1.3 上传文件的表单请求1.4❤ json类型的接口请求 2. 响应接口数据分析2.1 postman的响…...

Elasticsearch:如何在 Ubuntu 上安装多个节点的 Elasticsearch 集群 - 8.x

Elasticsearch 是一个强大且可扩展的搜索和分析引擎,可用于索引和搜索大量数据。 Elasticsearch 通常用于集群环境中,以提高性能、提供高可用性并实现数据冗余。 在本文中,我们将讨论如何在 Ubuntu 20.04 上安装和配置具有多节点集群的 Elast…...

记录win 7旗舰版 “VMware Alias Manager and Ticket Service‘(VGAuhService)启动失败。

记录win 7旗舰版 "VMware Alias Manager and Ticket Service’(VGAuhService)启动失败。 描述如图 https://learn.microsoft.com/zh-CN/cpp/windows/latest-supported-vc-redist?viewmsvc-140#visual-studio-2015-2017-2019-and-2022 安装对应版本的VC 库就可以解决问…...

git 开发环境配置

系统:Mac OS 1、下载git,官网已经推荐使用命令下载。 /bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh) 2、验证git是否安装成功 git --version 3、配置本地git全局变量 git config --global user.n…...

Tableau画图

目录 蝴蝶图 四象图 排序图 盒型图/散点图 圆环图 火柴图 直方图 瀑布图 地理图 面积图 树地图 面积图 条形图 词云图 双轴图 填充地图 tableau2023.2 须知 蝴蝶图 拉好数据之后 创建新字段正负销售额,并拖入第一个颜色标记卡 四象图 智能推荐 散…...

nginx上web服务的基本安全优化、服务性能优化、访问日志优化、目录资源优化和防盗链配置简介

一.基本安全优化 1.隐藏nginx软件版本信息 2.更改源码来隐藏软件名和版本 (1)修改第一个文件(核心头文件),在nginx安装目录下找到这个文件并修改 (2)第二个文件 (3)…...

himall3.0商城源码

目录 1 himall3.0商城源码 1.1 /// 获取待评价订单数量 1.2 /// 保存支付订单信息,生成支付订单 1.3 /// 取最近time分钟内的满足打印的订单数据 himall3.0商城源码 /// <summary>...

【LeetCode75】第二十九题 删除链表的中间节点

目录 题目&#xff1a; 示例; 分析: 代码: 题目&#xff1a; 示例; 分析: 给我们一个链表&#xff0c;让我们把链表中间的节点删了。 那么最直观最基础的办法是遍历两边链表&#xff0c;第一遍拿到链表长度&#xff0c;第二次把链表中间节点删了。 这个暴力做法我没事过…...

Floyd(多源汇最短路)

Floyd求最短路 给定一个 n 个点 m 条边的有向图&#xff0c;图中可能存在重边和自环&#xff0c;边权可能为负数。 再给定 k 个询问&#xff0c;每个询问包含两个整数 x 和 y&#xff0c;表示查询从点 x 到点 y 的最短距离&#xff0c;如果路径不存在&#xff0c;则输出 impo…...

Pycharm找不到Conda可执行文件路径(Pycharm无法导入Anaconda已有环境)

在使用Pycharm时发现无法导入Anaconda创建好的环境&#xff0c;会出现找不到Conda可执行文件路径的问题。 解决 在输入框内输入D:\anaconda3\Scripts\conda.exe&#xff0c;点击加载环境。 注意前面目录是自己Anaconda的安装位置&#xff0c;之后就可以找到Anaconda的现有环…...

国产之光:讯飞星火最新大模型V2.0

大家好&#xff0c;我是herosunly。985院校硕士毕业&#xff0c;现担任算法研究员一职&#xff0c;热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名&#xff0c;CCF比赛第二名&#xff0c;科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的…...

通讯录实现【C语言】

目录 前言 一、整体逻辑分析 二、实现步骤 1、创建菜单和多次操作问题 2、创建通讯录 3、初始化通讯录 4、添加联系人 5、显示联系人 6、删除指定联系人 ​7、查找指定联系人 8、修改联系人信息 9、排序联系人信息 三、全部源码 前言 我们上期已经详细的介绍了自定…...

pcl欧式聚类

欧式聚类实现方法大致是&#xff1a; 1、找到空间中某点 p 1 p_1 p1​&#xff0c;用KD-Tree找到离他最近的n个点&#xff0c;判断这n个点到 p 1 p_1 p1​的距离。将距离小于阈值r的点 p 2 、 p 3 、 p 4 p_2、p_3、p_4 p2​、p3​、p4​…放在类Q里 2、在 Q ( p 1 ) Q(p_1…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...