当前位置: 首页 > news >正文

OpenCV-Python中的图像处理-图像特征

OpenCV-Python中的图像处理-图像特征

  • 图像特征
    • Harris角点检测
    • 亚像素级精度的角点检测
    • Shi-Tomasi角点检测
    • SIFT(Scale-Invariant Feature Transfrom)
    • SURF(Speeded-Up Robust Features)
    • FAST算法
    • BRIEF(Binary Robust Independent Elementary Features)算法
    • ORB (Oriented FAST and Rotated BRIEF)算法
  • 特征匹配
    • Brute-Force 蛮力匹配
      • 对 ORB 描述符进行蛮力匹配
      • 对 SIFT 描述符进行蛮力匹配和比值测试
    • FLANN 匹配

图像特征

  • 特征理解
  • 特征检测
  • 特征描述

Harris角点检测

  • cv2.cornerHarris(img, blockSize, ksize, k, borderType=…)
    • img:输入图像,数据类型为float32
    • blockSize:角点检测中要考虑的领域大小
    • ksize:Sobe求导中使用的窗口大小
    • k:Harris角点检测方程中的自由参数,取值参数为 [0.04,0.06]
    • borderType:边界类型
import numpy as np
import cv2
from matplotlib import pyplot as plt# img = cv2.imread('./resource/opencv/image/chessboard.png', cv2.IMREAD_COLOR)
img = cv2.imread('./resource/opencv/image/pattern.png', cv2.IMREAD_COLOR)gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)gray = np.float32(gray)# 输入图像必须是float32,最后一个参数在0.04到0.05之间
dst = cv2.cornerHarris(gray, 2, 3, 0.05)
dst = cv2.dilate(dst, None)img[dst>0.01*dst.max()] = [0, 0, 255]cv2.imshow('dst', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

亚像素级精度的角点检测

  • cv2.cornerSubPix(img, corners, winSize, zeroZone, criteria)
    最大精度的角点检测,首先要找到 Harris角点,然后将角点的重心传给这个函数进行修正。
import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/subpixel.png', cv2.IMREAD_COLOR)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)gray = np.float32(gray)
dst = cv2.cornerHarris(gray, 2, 3, 0.04)
dst = cv2.dilate(dst, None)
ret, dst = cv2.threshold(dst, 0.01*dst.max(), 255, 0)
dst = np.uint8(dst)ret, labels, stats, centroids = cv2.connectedComponentsWithStats(dst)criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.001)corners = cv2.cornerSubPix(gray, np.float32(centroids), (5,5), (-1, -1), criteria)res = np.hstack((centroids, corners))res = np.int0(res)
img[res[:,1],res[:,0]]=[0,0,255]
img[res[:,3],res[:,2]]=[0,255,0]cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

Harris 角点用红色像素标出,绿色像素是修正后的角点。
在这里插入图片描述

Shi-Tomasi角点检测

  • cv2.goodFeatureToTrack()
import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/shitomasi_block.jpg', cv2.IMREAD_COLOR)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)corners = cv2.goodFeaturesToTrack(gray, 25, 0.01, 10)corners = np.int0(corners)for i in corners:x,y = i.ravel()cv2.circle(img, (x,y), 3, 255, -1)plt.imshow(img)
plt.show()

在这里插入图片描述

SIFT(Scale-Invariant Feature Transfrom)

  • SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述。这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子。

  • cv2.SIFT_create()

    • kp = sift.detect(img, None):查找特征点
    • kp, des = sift.compute(img, kp):计算特征点
    • kp, des = sift.detectAndCompute(img, None) :直接找到特征点并计算描述符
  • cv2.drawKeypoints(img, kp, out_img, flags=cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS):画特征点

    • img : 输入图像
    • kp:图像特征点
    • out_img:输出图像
    • flags:
      cv2.DRAW_MATCHES_FLAGS_DEFAULT
      cv2.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG
      cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS
      cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS
import numpy as np
import cv2# 读取图片
# img = cv2.imread('./resource/opencv/image/home.jpg')
img = cv2.imread('./resource/opencv/image/AverageMaleFace.jpg')
key_points = img.copy()# 实例化SIFT算法
sift = cv2.SIFT_create()# 得到特征点
kp = sift.detect(img, None)
print(np.array(kp).shape)# 绘制特征点
cv2.drawKeypoints(img, kp, key_points, flags=cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS)# 图片展示
cv2.imshow("key points", key_points)
cv2.waitKey(0)
cv2.destroyAllWindows()# 保存图片
# cv2.imwrite("key_points.jpg", key_points)# 计算特征
kp, des = sift.compute(img, kp)# 调试输出
print(des.shape)
print(des[0])cv2.imshow('kp', key_points)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

SURF(Speeded-Up Robust Features)

  • 文章前面介绍了使用 SIFT 算法进行关键点检测和描述。但是这种算法的执行速度比较慢,人们需要速度更快的算法。在 2006 年Bay,H.,Tuytelaars,T. 和 Van Gool,L 共同提出了 SURF(加速稳健特征)算法。跟它的名字一样,这是个算法是加速版的 SIFT。
  • 与 SIFT 相同 OpenCV 也提供了 SURF 的相关函数。首先我们要初始化一个 SURF 对象,同时设置好可选参数: 64/128 维描述符, Upright/Normal 模式等。所有的细节都已经在文档中解释的很明白了。就像我们在SIFT 中一样,我们可以使用函数 SURF.detect(), SURF.compute() 等来进行关键点搀着和描述。

img = cv2.imread(‘fly.png’, 0)
surf = cv2.SURF(400)
kp, des = surf.detectAndCompute(img, None)
len(kp) # 699
print(surf.hessianThreshold)
surf.hessianThreshold = 50000
kp, des = surf.detectAndCompute(img,None)
print(len(kp)) # 47
不检测关键点的方向
print(surf.upright) #False
surf.upright = True

FAST算法

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/fly.jpg', cv2.IMREAD_GRAYSCALE)# fast = cv2.FastFeatureDetector_create(threshold=100, nonmaxSuppression=False, type=cv2.FAST_FEATURE_DETECTOR_TYPE_5_8)
fast = cv2.FastFeatureDetector_create(threshold=400)
kp = fast.detect(img, None)
img2 = cv2.drawKeypoints(img, kp, img.copy(), color=(0, 0, 255), flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)cv2.imshow('fast', img2)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

BRIEF(Binary Robust Independent Elementary Features)算法

  • BRIEF(Binary Robust Independent Elementary Features)
import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/fly.jpg', cv2.IMREAD_GRAYSCALE)# Initiate STAR detector
star = cv2.FeatureDetector_create("STAR")
# Initiate BRIEF extractor
brief = cv2.DescriptorExtractor_create("BRIEF")
# find the keypoints with STAR
kp = star.detect(img,None)
# compute the descriptors with BRIEF
kp, des = brief.compute(img, kp)
print(brief.getInt('bytes'))
print(des.shape)

ORB (Oriented FAST and Rotated BRIEF)算法

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/fly.jpg', cv2.IMREAD_GRAYSCALE)# ORB_create(nfeatures=..., scaleFactor=..., nlevels=..., edgeThreshold=..., firstLevel=..., WTA_K=..., scoreType=..., patchSize=..., fastThreshold=...)
orb = cv2.ORB_create()kp = orb.detect(img, None)kp, des = orb.compute(img, kp)img2 = cv2.drawKeypoints(img, kp, img.copy(), color=(255, 0, 0), flags=0)
plt.imshow(img2)
plt.show()

在这里插入图片描述

特征匹配

OpenCV 中的特征匹配

  • 蛮力( Brute-Force)匹配
  • FLANN 匹配

Brute-Force 蛮力匹配

对 ORB 描述符进行蛮力匹配

import numpy as np
import cv2
from matplotlib import pyplot as pltimg1 = cv2.imread('./resource/opencv/image/box.png', 0)
img2 = cv2.imread('./resource/opencv/image/box_in_scene.png', 0)orb = cv2.ORB_create()kp1, des1 = orb.detectAndCompute(img1, None)
kp2, des2 = orb.detectAndCompute(img2, None)bf = cv2.BFMatcher_create(cv2.NORM_HAMMING, crossCheck=True)matches = bf.match(des1, des2)# matches = bf:match(des1; des2) 返回值是一个 DMatch 对象列表。这个
# DMatch 对象具有下列属性:
# • DMatch.distance - 描述符之间的距离。越小越好。
# • DMatch.trainIdx - 目标图像中描述符的索引。
# • DMatch.queryIdx - 查询图像中描述符的索引。
# • DMatch.imgIdx - 目标图像的索引。# 距离排序
matches = sorted(matches, key = lambda x:x.distance)# 画出前30匹配
img3 = cv2.drawMatches(img1, kp1, img2, kp2, matches[:30], None, flags=2)cv2.imshow('img', img3)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

对 SIFT 描述符进行蛮力匹配和比值测试

现在我们使用 BFMatcher.knnMatch() 来获得 k 对最佳匹配。在本例中我们设置 k = 2,这样我们就可以使用 D.Lowe 文章中的比值测试了。

import numpy as np
import cv2
from matplotlib import pyplot as pltimg1 = cv2.imread('./resource/opencv/image/box.png', 0)
img2 = cv2.imread('./resource/opencv/image/box_in_scene.png', 0)sift = cv2.SIFT_create()
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)bf = cv2.BFMatcher_create()
matches = bf.knnMatch(des1, des2, k=2)good = []
for m,n in matches:if m.distance < 0.75*n.distance:good.append([m])# drawMatchesKnn(img1, keypoints1, img2, keypoints2, matches1to2, outImg, matchColor=..., singlePointColor=..., matchesMask=..., flags: int = ...)
img3 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, good[:100], None, flags=2)
plt.imshow(img3)
plt.show()

在这里插入图片描述

FLANN 匹配

FLANN 是快速最近邻搜索包(Fast_Library_for_Approximate_Nearest_Neighbors)的简称。它是一个对大数据集和高维特征进行最近邻搜索的算法的集合,而且这些算法都已经被优化过了。在面对大数据集时它的效果要好于 BFMatcher。我们来对第二个例子使用 FLANN 匹配看看它的效果。

import numpy as np
import cv2
from matplotlib import pyplot as pltimg1 = cv2.imread('./resource/opencv/image/box.png', 0)
img2 = cv2.imread('./resource/opencv/image/box_in_scene.png', 0)sift = cv2.SIFT_create()
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)flann = cv2.FlannBasedMatcher_create()
matches = flann.knnMatch(des1, des2, k=2)matchesMask = [[0,0] for i in range(len(matches))]for i, (m, n) in enumerate(matches):if m.distance < 0.7*n.distance:matchesMask[i] = [1,0]draw_params = dict(matchColor = (0, 255, 0),singlePointColor = (255, 0, 0),matchesMask = matchesMask,flags = 0)img3 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, matches, None, **draw_params)
plt.imshow(img3)
plt.show()

在这里插入图片描述

相关文章:

OpenCV-Python中的图像处理-图像特征

OpenCV-Python中的图像处理-图像特征 图像特征Harris角点检测亚像素级精度的角点检测Shi-Tomasi角点检测SIFT(Scale-Invariant Feature Transfrom)SURF(Speeded-Up Robust Features)FAST算法BRIEF(Binary Robust Independent Elementary Features)算法ORB (Oriented FAST and R…...

Ajax入门+aixos+HTTP协议

一.Ajax入门 概念:AJAX是浏览器与服务器进行数据通信的技术 axios使用: 引入axios.js使用axios函数:传入配置对象,再用.then回调函数接受结果,并做后续处理 <!DOCTYPE html> <html><head><meta charset"utf-8"><title>01.axios使用…...

conda创建虚拟环境

创建虚拟环境是在计算机上设置一个独立的空间&#xff0c;用于安装和运行特定版本的软件和依赖项&#xff0c;以避免与系统其他部分的冲突。 创建虚拟环境&#xff1a; conda create --name myenv python3.8 这将创建一个名为myenv的虚拟环境&#xff0c;并安装Python 3.8版本。…...

Golang服务的请求调度

文章目录 1. 写在前面2. SheddingHandler的实现原理3. 相关方案的对比4. 小结 1. 写在前面 最近在看相关的Go服务的请求调度的时候&#xff0c;发现在gin中默认提供的中间件中&#xff0c;不含有请求调度相关的逻辑中间件&#xff0c;去github查看了一些服务框架&#xff0c;发…...

Jenkins的流水线启动jar后未执行问题处理

现象 在流水线里配置了启动脚本例如&#xff0c;nohup java -jar xxx.jar >nohup.out 2>&1 & 但是在服务器发现服务并未启动,且nohup日志里没输出日志,这样的原因是jenkins在执行完脚本后&#xff0c;就退出了这个进程。 在启动脚本执行jar命令的上一步加入以下…...

智慧工地平台工地人员管理系统 可视化大数据智能云平台源码

智慧工地概述&#xff1a; 智慧工地管理平台是以物联网、移动互联网技术为基础&#xff0c;充分应用大数据、人工智能、移动通讯、云计算等信息技术&#xff0c;利用前端信息采通过人机交互、感知、决策、执行和反馈等&#xff0c;实现对工程项目內人员、车辆、安全、设备、材…...

外包干了2个月测试,技术退步明显...

先说一下自己的情况&#xff0c;大专生&#xff0c;18年通过校招进入湖南某软件公司&#xff0c;干了接近4年的功能测试&#xff0c;今年年初&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测试…...

神经网络基础-神经网络补充概念-19-向量化实现的解释

概念 向量化是一种优化技术&#xff0c;通过使用数组操作代替显式的循环&#xff0c;可以大大提高代码的性能和效率。在机器学习和数据分析领域&#xff0c;向量化是一种常见的实践&#xff0c;它允许你在处理大量数据时更快地进行计算。 一般操作 数组操作&#xff1a;向量…...

四层和七层负载均衡的区别

一、四层负载均衡 四层就是ISO参考模型中的第四层。四层负载均衡器也称为四层交换机&#xff0c;它主要时通过分析IP层和TCP/UDP层的流量实现的基于“IP端口”的负载均衡。常见的基于四层的负载均衡器有LVS、F5等。 以常见的TCP应用为例&#xff0c;负载均衡器在接收到第一个来…...

Scala 如何调试隐式转换--隐式转换代码的显示展示

方法1 在需要隐式转换的地方&#xff0c;把需要的参数显示的写出。 略方法2&#xff0c;查看编译代码 在terminal中 利用 scalac -Xprint:typer xxx.scala方法打印添加了隐式值的代码示例。 对于复杂的工程来说&#xff0c;直接跑到terminal执行 scalac -Xprint:typer xxx.…...

Rust交叉编译简述 —— Arm

使用系统&#xff1a;WSL2 —— Kali(Microsoft Store) 命令列表 rustup target list # 当前官方支持的构建目标架构列表 rustup target add aarch64-unknown-linux-gnu # 添加目标架构sudo apt-get install gcc-13-aarch64-linux-gnu gcc-13-aarch64-linux-gnu # 下载目标工具…...

算法与数据结构(二十三)动态规划设计:最长递增子序列

注&#xff1a;此文只在个人总结 labuladong 动态规划框架&#xff0c;仅限于学习交流&#xff0c;版权归原作者所有&#xff1b; 也许有读者看了前文 动态规划详解&#xff0c;学会了动态规划的套路&#xff1a;找到了问题的「状态」&#xff0c;明确了 dp 数组/函数的含义&a…...

相机的位姿在地固坐标系ECEF和ENU坐标系的转换

在地球科学和导航领域&#xff0c;通常使用地心地固坐标系&#xff08;ECEF&#xff0c;Earth-Centered, Earth-Fixed&#xff09;和东北天坐标系&#xff08;ENU&#xff0c;East-North-Up&#xff09;来描述地球上的位置和姿态。如下图所示&#xff1a; ​地心地固坐标ecef和…...

RFID技术助力汽车零配件装配产线,提升效率与准确性

随着科技的不断发展&#xff0c;越来越多的自动化设备被应用到汽车零配件装配产线中。其中&#xff0c;射频识别&#xff08;Radio Frequency Identification&#xff0c;简称RFID&#xff09;技术凭借其独特的优势&#xff0c;已经成为了这一领域的重要技术之一。本文将介绍RF…...

应用高分辨率 GAN 对扰动文档图像去扭曲的深度Python实践

1. 引言 随着技术的不断发展&#xff0c;图像处理在各种场景中的应用也变得越来越广泛。高分辨率 GAN (Generative Adversarial Network) 是近年来图像处理领域的热点技术&#xff0c;它能够生成极高分辨率的图像&#xff0c;与此同时&#xff0c;它也可以用于各种修复和增强任…...

【BASH】回顾与知识点梳理(二十六)

【BASH】回顾与知识点梳理 二十六 二十六. 二十一至二十五章知识点总结及练习26.1 总结26.2 模拟26.3 简答题 该系列目录 --> 【BASH】回顾与知识点梳理&#xff08;目录&#xff09; 二十六. 二十一至二十五章知识点总结及练习 26.1 总结 Linux 操作系统上面&#xff0c…...

React下载文件的两种方式

React下载文件的两种方式 - 代码先锋网 不知道有用没用看着挺整齐 没试过 1、GET类型下载 download url > {const eleLink document.createElement(a);eleLink.style.display none;// eleLink.target "_blank"eleLink.href url;// eleLink.href record;d…...

python入门知识:分支结构

前言 嗨喽&#xff0c;大家好呀~这里是爱看美女的茜茜呐 1.内容导图 &#x1f447; &#x1f447; &#x1f447; 更多精彩机密、教程&#xff0c;尽在下方&#xff0c;赶紧点击了解吧~ python资料、视频教程、代码、插件安装教程等我都准备好了&#xff0c;直接在文末名片自…...

DNS协议及其工作原理

DNS是域名系统&#xff08;Domain Name System&#xff09;的缩写&#xff0c;它是一种用于将域名转换为IP地址的分布式数据库系统。它是因特网的基石&#xff0c;能够使人们通过域名方便地访问互联网&#xff0c;而无需记住复杂的IP地址。 DNS的历史可以追溯到1983年&#xf…...

调用被fishhook的原函数

OC类如果通过runtime被hook了&#xff0c;可以通过逆序遍历方法列表的方式调用原方法。 那系统库的C函数被fish hook了该怎么办呢&#xff1f; 原理和OC类异曲同工&#xff0c;即通过系统函数dlopen()获取动态库&#xff0c;以动态库为参数通过系统函数dlsym()即可获取目标系统…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

JavaScript基础-API 和 Web API

在学习JavaScript的过程中&#xff0c;理解API&#xff08;应用程序接口&#xff09;和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能&#xff0c;使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...

规则与人性的天平——由高考迟到事件引发的思考

当那位身着校服的考生在考场关闭1分钟后狂奔而至&#xff0c;他涨红的脸上写满绝望。铁门内秒针划过的弧度&#xff0c;成为改变人生的残酷抛物线。家长声嘶力竭的哀求与考务人员机械的"这是规定"&#xff0c;构成当代中国教育最尖锐的隐喻。 一、刚性规则的必要性 …...

P10909 [蓝桥杯 2024 国 B] 立定跳远

# P10909 [蓝桥杯 2024 国 B] 立定跳远 ## 题目描述 在运动会上&#xff0c;小明从数轴的原点开始向正方向立定跳远。项目设置了 $n$ 个检查点 $a_1, a_2, \cdots , a_n$ 且 $a_i \ge a_{i−1} > 0$。小明必须先后跳跃到每个检查点上且只能跳跃到检查点上。同时&#xff0…...

实现p2p的webrtc-srs版本

1. 基本知识 1.1 webrtc 一、WebRTC的本质&#xff1a;实时通信的“网络协议栈”类比 将WebRTC类比为Linux网络协议栈极具洞察力&#xff0c;二者在架构设计和功能定位上高度相似&#xff1a; 分层协议栈架构 Linux网络协议栈&#xff1a;从底层物理层到应用层&#xff08;如…...

C#学习12——预处理

一、预处理指令&#xff1a; 解释&#xff1a;是在编译前由预处理器执行的命令&#xff0c;用于控制编译过程。这些命令以 # 开头&#xff0c;每行只能有一个预处理指令&#xff0c;且不能包含在方法或类中。 个人理解&#xff1a;就是游戏里面的备战阶段&#xff08;不同对局…...

Clickhouse统计指定表中各字段的空值、空字符串或零值比例

下面是一段Clickhouse SQL代码&#xff0c;用于统计指定数据库中多张表的字段空值情况。代码通过动态生成查询语句实现自动化统计&#xff0c;处理逻辑如下&#xff1a; 从系统表获取指定数据库&#xff08;替换your_database&#xff09;中所有表的字段元数据根据字段类型动态…...