深入理解【二叉树】
📙作者简介: 清水加冰,目前大二在读,正在学习C/C++、Python、操作系统、数据库等。
📘相关专栏:C语言初阶、C语言进阶、C语言刷题训练营、数据结构刷题训练营、有感兴趣的可以看一看。
欢迎点赞 👍 收藏 ⭐留言 📝 如有错误还望各路大佬指正!
✨每一次努力都是一种收获,每一次坚持都是一种成长✨

目录
前言
1. 特殊二叉树
1.1 满二叉树
1.2 完全二叉树
1.3 二叉树的性质
2. 搜索二叉树
3. 练习
📖 题目一
📖 题目二
📖 题目三
总结
前言
在计算机科学领域中,二叉树作为一种重要的数据结构,被广泛应用于各种算法和问题的解决方案中。然而,对于许多人来说,二叉树仍然是一个神秘而复杂的概念。本篇博客将带领你一同深入探索二叉树的内在结构和特性,帮助你建立起对二叉树的全面理解。
1. 特殊二叉树
前边我们已经介绍了树的结构,也了解了普通二叉树,以及二叉树的遍历,今天我们将会继续深入学习二叉树。
1.1 满二叉树
一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。如下图:

1.2 完全二叉树
完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。(直白点说就是:假设有n层,前n-1层为满二叉树,最后一层的节点从左到右依次连接,不会出现一个节点连不满的情况)
如下图:

这样的它就不属于完全二叉树:

因为从左到右,有节点没有满(从左到右节点必须连满,不能出现有空)。
1.3 二叉树的性质
- 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有 2⁽ⁱ⁻¹⁾个结点.
- 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2ʰ-1
- 对任何一棵二叉树, 如果度为0其叶结点个数为 , 度为2的分支结点个数为 ,则有 n₀=n₂+1(下标为二叉树的度)
- 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h= log₂(n+1)
对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:
- 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
- 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
- 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子
2. 搜索二叉树
上述的二叉树对于数据存储没什么特别规定与要求,属于普通二叉树大类,对于普通二叉树来说,没有增删查改,普通二叉树的增删查改在现实应用中是没有意义的(数据没有特殊规定,无法确认新增节点的位置)。所以这里我们再来介绍一下其他的二叉树——搜索二叉树
什么是搜索二叉树?如下图:

任何一颗树,左子树都要比根小,右子树都要比根大。搜索二叉树的这个特性使得它的插入位置就可以确定。例如我们要插入一个数据38:

从根开始,38比35大,就进入右子树,38比39小,那就插入到39左子树的位置。
例如我们再插入一个40:

从根开始,40比35大,就进入右子树,40比39大,进入右子树,40比65小,那就插入到65的左孩子节点位置。
如果我们要查找一个数,例如我们查找30,30比35小,进入左子树,30比17大,进入右子树,30比20大继续进入到右子树,但20没有子节点,所以没有30这个节点,到这里就停止寻找。通过这些例子我们可以发现,这样的二叉树很适合搜索。搜索二叉树最多搜索高度次。
搜索的时间复杂度是O(N),细心的同学可能就会发现,搜素二叉树最多搜素高度次,那二叉树的高度不是有一个公式h= log₂(n+1),时间复杂度为什么不是O(log N)?
这里注意:这个二叉树的高度公式针对的是满二叉树,而搜素二叉树它可能出现退化的情况。如下图:

最坏的情况:我们找1这个节点,它的时间复杂度就是O(N)。
那要如何避免这种情况的发生?使左右两边的节点数量均匀,又要保持这个特性。
这里又可以引出一个新的概念——平衡树
平衡树的特性就是:左右两边的节点数据比较均匀。
平衡树又可以分为:
- AVL树
- 红黑树
依照现在博客所讲的水平,想要学会这两种树是不可能的,除此之外后续我们还会学习B树,它是一种多叉搜索树。数据库的原理就与它有关。(此部分为了解)这部分的树状结构才是有用的东西,精髓就在这部分内容,这里我们后续会进行学习。
本期我们不会进行代码的编写介绍,我们要弄清楚二叉树的性质,以及延申部分。接下来就是练习部分,帮助大家理解掌握二叉树的性质。
3. 练习
📖 题目一
1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为 ()
A、不存在这样的二叉树
B、200
C、198
D、199
✨题目解析:
度为2的节点有199个,根据二叉树的性质:n₀=n₂+1,度为0的节点个数等于度为2的节点个数+1。度为0的节点就为叶子节点。
正确答案:B
📖 题目二
2. 在具有 2n 个结点的完全二叉树中,叶子结点个数为( )
A、n
B、n+1
C、n-1
D、n/2
✨题目解析:
这道题目看似无解,突破口就在完全二叉树。我们设度为0的节点个数为N0,度为1的节点个数为N1,度为2的节点个数为N2。根据性质可知:N0=N2+1,且N0+N1+N2=2n。
两式联合:N0+N1+N0-1=2n。
又因为这是一颗完全二叉树,完全二叉树度为1的节点只能有1个或没有。但又要确保都为整数,所以度为1的节点就只要1个。即:N0+1+N0-1=2n
正确答案:A
📖 题目三
3.一棵完全二叉树的节点数位为531个,那么这棵树的高度为( )
A、11
B、10
C、8
D、12
✨题目解析:
题目要求这棵树的高度,那就设树的高度为h,最后一层缺了X个,根据定义我们可知:满二叉树是一种特殊的完全二叉树。
由此可得出:2^h-1-X就是完全二叉树的节点个数,即:2^h-1-X=531。到这里看似无解,但我们还可以根据性质进行推算,X的取值范围是0 ~ 2^(h-1)-1,至少最后一层有1个节点,最多最后一次为满(满二叉树),知道这些我们就可以带选项进行推算了。代换:2^h-1-2^(h-1)+1。代入选项,看最终哪个选项的结果最接近500。
代入11,2的11次方:2048-1024=1024,如果高度是11那最少有1024个节点,A选项错误。这样依次代入。
正确答案:B
总结
通过本篇博客我们对二叉树的内在结构、特性,有了更全面的了解,希望通过本篇博客的阅读,你已经掌握了深入理解二叉树的关键知识。最后,感谢阅读!
相关文章:
深入理解【二叉树】
📙作者简介: 清水加冰,目前大二在读,正在学习C/C、Python、操作系统、数据库等。 📘相关专栏:C语言初阶、C语言进阶、C语言刷题训练营、数据结构刷题训练营、有感兴趣的可以看一看。 欢迎点赞 👍…...
RequestRespons
文章目录 Request&Respons1 Request和Response的概述2 Request对象2.1 Request继承体系2.2 Request获取请求数据2.2.1 获取请求行数据2.2.2 获取请求头数据2.2.3 获取请求体数据2.2.4 获取请求参数的通用方式 2.3 IDEA快速创建Servlet2.4 请求参数中文乱码问题2.4.1 POST请…...
UniApp 使用命令创建页面的详细指南
系列文章目录 文章目录 系列文章目录前言一、安装Uni-CLI二、创建页面三、页面创建命令四、页面结构五、页面使用总结 前言 UniApp是一款跨平台的前端框架,可以用于开发同时运行在多个平台(如微信小程序、H5、App等)的应用程序。本文将详细介…...
Opencv 图像的读取与写入
目录 导入cv2 读取图像数据 创建一个窗口 waitKey方法 关闭所有窗口 完整示例 保存图片 示例 导入cv2 # 导入opencv包 import cv2 读取图像数据 cv2.imread(path, flag) 参数说明: path:要读取的图像文件的路径。 flag(可选&#…...
关于rinex3.x广播星历文件中时间系统的说明
文章目录 rinex广播星历文件介绍广播星历介绍rinex3.x多系统广播星历文件中的时间系统写在最后 rinex广播星历文件介绍 rinex星历文件是一种ascii字符文件,可以存放广播星历和精密星历,被广泛用于GNSS数据处理。 本文主要介绍广播星历文件。 对于rinex…...
Ansible 实战
Ansible 实战 1. httpd 角色 目录 rootubuntu1904:~#tree -f httpd/ httpd ├── httpd/default │ └── httpd/default/main.yml ├── httpd/files │ ├── httpd/files/httpd.conf │ └── httpd/files/index.html ├── httpd/handlers │ └── http…...
三、单元测试
三、单元测试 好的单元测试必须遵守 AIR 原则 A:Automatic(自动化)I:Independent(独立性)R:Repeatable(可重复) 单元测试应该是全自动执行的,并且非交互式的…...
“Spring管理JavaBean的过程及Bean的生命周期“
目录 引言1.弹簧容器2. Bean的生命周期2.1 配置javaBean2.2. 解析Bean的定义2.3 检查是否需要添加自己的功能2.4 初始化2.5 实现Aware接口2.6 扩展2.7. 销毁 3. 单例模式和原型模式3.1. 单例模式3.2. 原型模式 4. 总结 引言 Spring框架是一个非常流行的Java应用程序框架&#…...
@mouseover不起作用,并没有触发
我的错误代码如下: <el-rowv-for"version in item.version_list":key"version.id":class"{ blue-background: versionItem.id version.id }"mouseover.native"version.isHovered true"mouseleave.native"version…...
Vue 2 组件注册
组件名的命名规则 定义组件名的两种方式: 短横线分隔命名,Kebab Case,例如my-component-name。单词首字母大写命名,Pascal Case,例如MyComponentName。 第一种方式在模板中使用<my-component-name>引用该元素…...
学习游戏开发引擎,打造梦想中的虚拟世界!
游戏开发引擎是游戏开发过程中的关键工具,它们提供了开发者所需的各种功能和资源,加速了游戏的制作过程。以下是一些常用的游戏开发引擎以及它们的优势: Unity(Unity3D): 优势: Unity 是目前最…...
AI搜索引擎助力科学家创新
开发者希望通过帮助科学家从大量文献中发现联系从而解放科学家,让他们专注于发现和创新。 图片来源:The Project Twins 对于专注于历史的研究者Mushtaq Bilal来说,他在未来科技中投入了大量时间。 Bilal在丹麦南部大学( Universit…...
神经网络基础-神经网络补充概念-50-学习率衰减
概念 学习率衰减(Learning Rate Decay)是一种优化算法,在训练深度学习模型时逐渐减小学习率,以便在训练的后期更加稳定地收敛到最优解。学习率衰减可以帮助在训练初期更快地靠近最优解,而在接近最优解时减小学习率可以…...
android.system.ErrnoException: open failed: EPERM (Operation not permitted)
android 10(Q)开始增加了沙盒机制,不能直接把文件保存到/sdcard目录下,只能保存到APP专属目录下;AndroidManifest.xml在标签下增加属性【android:requestLegacyExternalStorage“true”】可以暂时保存到/sdcard路径下,但是Android…...
基于 KubeSphere 的应用容器化在智能网联汽车领域的实践
公司简介 某国家级智能网联汽车研究中心成立于 2018 年,是担当产业发展咨询与建议、共性技术研发中心、创新成果转化的国家级创新平台,旨在提高我国在智能网联汽车及相关产业在全球价值链中的地位。 目前着力建设基于大数据与云计算的智能汽车云端运营…...
面试之ReentrantLock
一,ReentrantLock 1.ReentrantLock是什么? ReentrantLock实现了Lock接口,是一个可重入且独占式的锁,和Synchronized关键字类似,不过ReentrantLock更灵活,更强大,增加了轮询、超时、中断、公平锁…...
系统学习Linux-MongoDB
概述 mongodb是一个nosql数据库,它有高性能、无模式、文档型的特点。是nosql数据库中功能最丰富,最像关系数据库的。数据库格式为BSON 相关概念实例:系统上运行的mongodb的进程,类似于mysql实例;库:每个数…...
【带着学Pytorch】2、张量(Tensor)的介绍与创建
一、Tensor介绍 1.1、 张量是什么? 最开始在出现CPU和GPU, GPU出现主要解决的问题时并行计算,在此基础上的软件层面的工作基本上围绕着并行计算进行的,张量也不例外。 首先,我们先来聊聊 编程语言,python,java ,C,C++等,他们都有的共同特点是什么?在大学中计算机类…...
UniApp 制作高德地图插件
1、下载Uni插件项目 在Uni官网下载Uni插件项目,并参考官网插件项目创建插件项目. 开发者须知 | uni小程序SDK 如果下载下来项目运行不了可以参考下面链接进行处理 UniApp原生插件制作_wangdaoyin2010的博客-CSDN博客 2、引入高德SDK 2.1 在高德官网下载对应SD…...
C# 图像处理之灰色图转化为RGB图像
咨询通义千问的“C# 图像处理之灰色图转化为RGB图像”结果,看看如何: 在C#中,可以使用Image类来处理图像。要将灰色图像转换为RGB图像,可以按照以下步骤进行操作: 1.创建一个灰色图像对象。 Image grayImage Imag…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...
Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...
招商蛇口 | 执笔CID,启幕低密生活新境
作为中国城市生长的力量,招商蛇口以“美好生活承载者”为使命,深耕全球111座城市,以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子,招商蛇口始终与城市发展同频共振,以建筑诠释对土地与生活的…...
GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...
破解路内监管盲区:免布线低位视频桩重塑停车管理新标准
城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...
Python 高效图像帧提取与视频编码:实战指南
Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...
