软考:中级软件设计师:数据库模式、ER模型
软考:中级软件设计师:数据库模式、ER模型
提示:系列被面试官问的问题,我自己当时不会,所以下来自己复盘一下,认真学习和总结,以应对未来更多的可能性
关于互联网大厂的笔试面试,都是需要细心准备的
(1)自己的科研经历,科研内容,学习的相关领域知识,要熟悉熟透了
(2)自己的实习经历,做了什么内容,学习的领域知识,要熟悉熟透了
(3)除了科研,实习之外,平时自己关注的前沿知识,也不要落下,仔细了解,面试官很在乎你是否喜欢追进新科技,跟进创新概念和技术
(4)准备数据结构与算法,有笔试的大厂,第一关就是手撕代码做算法题
面试中,实际上,你准备数据结构与算法时以备不时之需,有足够的信心面对面试官可能问的算法题,很多情况下你的科研经历和实习经历足够跟面试官聊了,就不需要考你算法了。但很多大厂就会面试问你算法题,因此不论为了笔试面试,数据结构与算法必须熟悉熟透了
秋招提前批好多大厂不考笔试,直接面试,能否免笔试去面试,那就看你简历实力有多强了。
(5)考网警的大佬,务必把软考:中级软件设计师的内容学好学透,学广,学多
文章目录
- 软考:中级软件设计师:数据库模式、ER模型
- @[TOC](文章目录)
- 软考:中级软件设计师:数据库模式
- 数据库的设计
- E-R模型
- 总结
文章目录
- 软考:中级软件设计师:数据库模式、ER模型
- @[TOC](文章目录)
- 软考:中级软件设计师:数据库模式
- 数据库的设计
- E-R模型
- 总结
软考:中级软件设计师:数据库模式
数据库本质上就是文件
内模式:如何存储一些列数据,这是内部视图。【对应物理级数据库】
概念模式:它对应表这个层级,他们是若干的概念,根据应用,关联不同的表【对应概念级数据库】
外模式,对应的是视图,从用户视角去看数据,灵活的手段查看啥的,外模式可以对数据表进行各种局部操作,不用整个表的所有数据都搞出来。【对应用户级数据库】
表,跟视图的映射关系,即:外模式–概念模式映射
表,跟内部的存储映射关系,即:概念–内模式映射
三级模式,两级映射。
这知识点,年年选择题必考的。3级模式,2级映射。
数据库的设计
设计过程,阶段产出需要掌握
现在还不是很清楚,后续我们慢慢讲细节
E-R模型
椭圆:属性
菱形:联系
方框:实体
课程有属性,用椭圆挂
学生和课程之间,是一个选课的联系。
多–多,是多个学生,可以选多课程,课程可以供多个学生选择
1–多,一个学生有不同的属性,比如姓名,电话等等
1-1是一个学生一个身份证号码
要读题,分析模块的形状,然后连线
一个实体,必须转为1个关系模式;——考试必备。
对于联系:
1:1,中间的联系直接转为1个关系模式,放左边,右边都可以
1:多的情况,实体是单独的关系模式
联系记录在员工这边,相当于看多那边的情况
多对多:实体每一个都需要转成1个关系模式,而关系转1个就行
如果是多多多,那关系单独转1个关系模式
所以
上面就是这种考试题。
很骚
你不管它为啥,方法就是这样。
下一课讲关系代数,老复杂了。
总结
提示:重要经验:
1)
2)
3)笔试求AC,可以不考虑空间复杂度,但是面试既要考虑时间复杂度最优,也要考虑空间复杂度最优。
相关文章:

软考:中级软件设计师:数据库模式、ER模型
软考:中级软件设计师:数据库模式、ER模型 提示:系列被面试官问的问题,我自己当时不会,所以下来自己复盘一下,认真学习和总结,以应对未来更多的可能性 关于互联网大厂的笔试面试,都是需要细心准…...

海量数据迁移,亚马逊云科技云数据库服务为大库治理提供新思路
1.背景 目前,文档型数据库由于灵活的schema和接近关系型数据库的访问特点,被广泛应用,尤其是游戏、互联网金融等行业的客户使用MongoDB构建了大量应用程序,比如游戏客户用来处理玩家的属性信息;又如股票APP用来存储与时…...

DevOps系列文章之 GitlabCICD自动化部署SpringBoot项目
一、概述 本文主要记录如何通过Gitlab CI/CD自动部署SpringBoot项目jar包。 二、前期准备 准备三台 CentOS7服务器,分别部署以下服务: 序号系统IP服务1CentOS7192.168.56.10Gitlab2CentOS7192.168.56.11Runner (安装Docker)3Cen…...

汽车租赁管理系统/汽车租赁网站的设计与实现
摘 要 租赁汽车走进社区,走进生活,成为当今生活中不可缺少的一部分。随着汽车租赁业的发展,加强管理和规范管理司促进汽车租赁业健康发展的重要推动力。汽车租赁业为道路运输车辆一种新的融资服务形式、广大人民群众一种新的出行消费方式和…...

语句覆盖、条件覆盖、判定覆盖、条件-判定覆盖、路径覆盖
白盒测试是结构测试,主要对代码的逻辑进行验证。 逻辑覆盖率:语句覆盖<条件覆盖<判定覆盖<条件-判定覆盖<组合覆盖<路径覆盖 例子 一、语句覆盖 最基础的覆盖,只要每一个执行处理框内的语句都能执行就可,不用关注…...
二进制逻辑运算符
运算的优先级:非>与>或 1.逻辑与:“ ∧ \wedge ∧“,“ ⋅ \cdot ⋅“,and 在逻辑问题中与是所有的都是真结果才是真,比如: 1010101011 1010101011 1010101011和 1010110010 1010110010 1010110010…...
Bug日记-webstorm运行yarn 命令报错
在windows中输入yarn -v正确输出,在webstrom终端中运行yarn命令输出错误 问题:可能是由于 WebStorm 配置问题导致的。 解决方案: 检查 WebStorm 的终端配置:在 WebStorm 中,点击菜单栏的 “File”(文件&am…...

C++11并发与多线程笔记(9) async、future、packaged_task、promise
C11并发与多线程笔记(9) async、future、packaged_task、promise 1、std::async、std::future创建后台任务并返回值2、std::packaged_task:打包任务,把任务包装起来3、std::promise3、小结 1、std::async、std::future创建后台任务…...

Mr. Cappuccino的第63杯咖啡——Spring之AnnotationConfigApplicationContext源码分析
Spring之AnnotationConfigApplicationContext源码分析 源码分析 源码分析 以上一篇文章《Spring之Bean的生命周期》的代码进行源码分析 AnnotationConfigApplicationContext applicationContext new AnnotationConfigApplicationContext(SpringConfig02.class); LifeCycleBe…...

opencv直方图与模板匹配
import cv2 #opencv读取的格式是BGR import numpy as np import matplotlib.pyplot as plt#Matplotlib是RGB %matplotlib inline def cv_show(img,name):cv2.imshow(name,img)cv2.waitKey()cv2.destroyAllWindows() 直方图 cv2.calcHist(images,channels,mask,histSize,ran…...
Apache Doris 入门教程31:计算节点
需求场景 目前Doris是一个典型Share-Nothing的架构, 通过绑定数据和计算资源在同一个节点获得非常好的性能表现. 但随着Doris计算引擎性能持续提高, 越来越多的用户也开始选择使用Doris直接查询数据湖数据. 这类场景是一种Share-Disk场景, 数据往往存储在远端的HDFS/S3上, 计…...

Nacos和GateWay路由转发NotFoundException: 503 SERVICE_UNAVAILABLE “Unable to find
问题再现: 2023-08-15 16:51:16,151 DEBUG [reactor-http-nio-2][CompositeLog.java:147] - [dc73b32c-1] Encoding [{timestampTue Aug 15 16:51:16 CST 2023, path/content/course/list, status503, errorService Unavai (truncated)...] 2023-08-15 16:51:16,17…...
2021年9月全国计算机等级考试真题(二级C语言)
2021年9月全国计算机等级考试真题(二级C语言) 第1题 下列叙述中正确的是( )。 A. 算法的复杂度是指算法所处理的数据量 B. 算法的复杂度是指算法程序中指令的数量 C. 算法的复杂度是指算法控制结构的复杂程度 D. 算法的复杂度包…...

串口通讯
USART是全双工同步通讯 在同步通信中,数据信号所传输的内容绝大多数属于有效数据,而异步通信中包含了各种帧的标识符,所以同步通讯的效率更高。但是同步通信对时钟要求苛刻,允许的误差小。而异步通信则允许双方的误差较大 比特率…...
自动拉取 GitHub 仓库更新的脚本
更好的阅读体验 \huge{\color{red}{更好的阅读体验}} 更好的阅读体验 由于将 HAUE-CS-WIKI 部署到了我自己的服务器上作为国内镜像站,每次在源站更新后都需要手动拉取镜像站的更新实在是太麻烦了,因此产生了编写该脚本的需求( 读者可根据该…...

如何获得Android 14复活节彩蛋
每个新的安卓版本都有隐藏复活节彩蛋的悠久传统,可以追溯到以前,每个版本都以某种甜食命名。安卓14也不例外,但这一次的主题都是围绕太空构建的——还有一个复活节彩蛋。 安卓14复活节彩蛋实际上是一款很酷的小迷你游戏,你可以乘…...
国产32位单片机XL32F001,带1 路 12bit ADC,I2C、SPI、USART 等外设
XL32F001 系列单片机采用高性能的 32 位 ARM Cortex-M0内核,宽电压工作范围的 MCU。嵌入 24KbytesFlash 和 3Kbytes SRAM 存储器,最高工作频率 24MHz。包含多种不同封装类型多款产品。芯片集成 I2C、SPI、USART 等通讯外设,1 路 12bit ADC&am…...
typescript基础之null和undefined
TypeScript是一种基于JavaScript的编程语言,它支持静态类型检查和面向对象的特性。TypeScript中的null和undefined是两种基本类型,它们分别表示空值或未定义的值。在本文中,我将介绍TypeScript中null和undefined的含义、区别、检查方法和使用…...

php_mb_strlen指定扩展
1 中文在utf-字符集下占3个字节,所以计算出来长度为9。 2 可以引入php多字节字符的扩展,默认是没有的,需要自己配置这个函数 3 找到php.ini文件,去掉;extension mbstring的注释,接着重启apache服务 可以看到准确输出的中文的长度…...

利用OpenCV光流算法实现视频特征点跟踪
光流简介 光流(optical flow)是运动物体在观察成像平面上的像素运动的瞬时速度。光流法是利用图像序列中像素在时间域上的变化以及相邻帧之间的相关性来找到上一帧跟当前帧之间存在的对应关系,从而计算出相邻帧之间物体的运动信息的一种方法。…...

idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...

TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
LRU 缓存机制详解与实现(Java版) + 力扣解决
📌 LRU 缓存机制详解与实现(Java版) 一、📖 问题背景 在日常开发中,我们经常会使用 缓存(Cache) 来提升性能。但由于内存有限,缓存不可能无限增长,于是需要策略决定&am…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...
git: early EOF
macOS报错: Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...