Elasticsearch集群shard过多后导致的性能问题分析
1.问题现象
上午上班以后发现ES日志集群状态不正确,集群频繁地重新发起选主操作。对外不能正常提供数据查询服务,相关日志数据入库也产生较大延时
2.问题原因
相关日志
查看ES集群日志如下:
00:00:51开始集群各个节点与当时的master节点通讯超时
| Time | level | data | 
|---|---|---|
| 00:00:51.140 | WARN | Received response for a request that has timed out, sent [12806ms] ago, timed out [2802ms] ago, action [internal:coordination/fault_detection/leader_check], node [{hot}{tUvNI22CRAanSsJdircGlA}{crDi96kOQl6J944HZqNB0w}{131}{131:9300}{dim}{xpack.installed=true, box_type=hot}], id [864657514] | 
| 00:01:24.912 | WARN | Received response for a request that has timed out, sent [12205ms] ago, timed out [2201ms] ago, action [internal:coordination/fault_detection/leader_check], node [{hot}{tUvNI22CRAanSsJdircGlA}{crDi96kOQl6J944HZqNB0w}{131}{131:9300}{dim}{xpack.installed=true, box_type=hot}], id [143113108] | 
| 00:01:24.912 | WARN | Received response for a request that has timed out, sent [12206ms] ago, timed out [2201ms] ago, action [internal:coordination/fault_detection/leader_check], node [{hot}{tUvNI22CRAanSsJdircGlA}{crDi96kOQl6J944HZqNB0w}{131}{131:9300}{dim}{xpack.installed=true, box_type=hot}], id [835936906] | 
| 00:01:27.731 | WARN | Received response for a request that has timed out, sent [20608ms] ago, timed out [10604ms] ago, action [internal:coordination/fault_detection/leader_check], node [{hot}{tUvNI22CRAanSsJdircGlA}{crDi96kOQl6J944HZqNB0w}{131}{131:9300}{dim}{xpack.installed=true, box_type=hot}], id [137999525] | 
| 00:01:44.686 | WARN | Received response for a request that has timed out, sent [18809ms] ago, timed out [8804ms] ago, action [internal:coordination/fault_detection/leader_check], node [{hot}{tUvNI22CRAanSsJdircGlA}{crDi96kOQl6J944HZqNB0w}{131}{131:9300}{dim}{xpack.installed=true, box_type=hot}], id [143114372] | 
| 00:01:44.686 | WARN | Received response for a request that has timed out, sent [18643ms] ago, timed out [8639ms] ago, action [internal:coordination/fault_detection/leader_check], node [{hot}{tUvNI22CRAanSsJdircGlA}{crDi96kOQl6J944HZqNB0w}{131}{131:9300}{dim}{xpack.installed=true, box_type=hot}], id [835938242] | 
| 00:01:56.523 | WARN | Received response for a request that has timed out, sent [20426ms] ago, timed out [10423ms] ago, action [internal:coordination/fault_detection/leader_check], node [{hot}{tUvNI22CRAanSsJdircGlA}{crDi96kOQl6J944HZqNB0w}{131}{131:9300}{dim}{xpack.installed=true, box_type=hot}], id [137250155] | 
| 00:01:56.523 | WARN | Received response for a request that has timed out, sent [31430ms] ago, timed out [21426ms] ago, action [internal:coordination/fault_detection/leader_check], node [{hot}{tUvNI22CRAanSsJdircGlA}{crDi96kOQl6J944HZqNB0w}{131}{131:9300}{dim}{xpack.installed=true, box_type=hot}], id [137249119] | 
触发各个节点发起重新选主的操作
| Time | level | data | 
|---|---|---|
| 00:00:51.140 | WARN | Received response for a request that has timed out, sent [12806ms] ago, timed out [2802ms] ago, action [internal:coordination/fault_detection/leader_check], node [{hot}{tUvNI22CRAanSsJdircGlA}{crDi96kOQl6J944HZqNB0w}{131}{131:9300}{dim}{xpack.installed=true, box_type=hot}], id [864657514] | 
| 00:01:24.912 | WARN | Received response for a request that has timed out, sent [12206ms] ago, timed out [2201ms] ago, action [internal:coordination/fault_detection/leader_check], node [{hot}{tUvNI22CRAanSsJdircGlA}{crDi96kOQl6J944HZqNB0w}{131}{131:9300}{dim}{xpack.installed=true, box_type=hot}], id [835936906] | 
| 00:01:24.912 | WARN | Received response for a request that has timed out, sent [12205ms] ago, timed out [2201ms] ago, action [internal:coordination/fault_detection/leader_check], node [{hot}{tUvNI22CRAanSsJdircGlA}{crDi96kOQl6J944HZqNB0w}{131}{131:9300}{dim}{xpack.installed=true, box_type=hot}], id [143113108] | 
| 00:01:27.731 | WARN | Received response for a request that has timed out, sent [20608ms] ago, timed out [10604ms] ago, action [internal:coordination/fault_detection/leader_check], node [{hot}{tUvNI22CRAanSsJdircGlA}{crDi96kOQl6J944HZqNB0w}{131}{131:9300}{dim}{xpack.installed=true, box_type=hot}], id [137999525] | 
| 00:01:44.686 | WARN | Received response for a request that has timed out, sent [18643ms] ago, timed out [8639ms] ago, action [internal:coordination/fault_detection/leader_check], node [{hot}{tUvNI22CRAanSsJdircGlA}{crDi96kOQl6J944HZqNB0w}{131}{131:9300}{dim}{xpack.installed=true, box_type=hot}], id [835938242] | 
| 00:01:44.686 | WARN | Received response for a request that has timed out, sent [18809ms] ago, timed out [8804ms] ago, action [internal:coordination/fault_detection/leader_check], node [{hot}{tUvNI22CRAanSsJdircGlA}{crDi96kOQl6J944HZqNB0w}{131}{131:9300}{dim}{xpack.installed=true, box_type=hot}], id [143114372] | 
新的主节点被选出,但频繁在3个候选节点间切换,集群状态始终处于不稳定状态
| Time | level | data | 
|---|---|---|
| 00:52:37.264 | DEBUG | executing cluster state update for [elected-as-master ([2] nodes joined)[{hot}{g7zfvt_3QI6cW6ugxIkSRw}{bELGusphTpy6RBeArNo8MA}{129}{129:9300}{dim}{xpack.installed=true, box_type=hot} elect leader, {hot}{GDyoKXPmQyC42JBjNP0tzA}{llkC7-LgQbi4BdcPiX_oOA}{130}{130:9300}{dim}{xpack.installed=true, box_type=hot} elect leader, _BECOME_MASTER_TASK_, _FINISH_ELECTION_]] | 
| 00:52:37.264 | TRACE | will process [elected-as-master ([2] nodes joined)[_FINISH_ELECTION_]] | 
| 00:52:37.264 | TRACE | will process [elected-as-master ([2] nodes joined)[_BECOME_MASTER_TASK_]] | 
| 00:52:37.264 | TRACE | will process [elected-as-master ([2] nodes joined)[{hot}{g7zfvt_3QI6cW6ugxIkSRw}{bELGusphTpy6RBeArNo8MA}{129}{129:9300}{dim}{xpack.installed=true, box_type=hot} elect leader]] | 
| 00:52:37.264 | TRACE | will process [elected-as-master ([2] nodes joined)[{hot}{GDyoKXPmQyC42JBjNP0tzA}{llkC7-LgQbi4BdcPiX_oOA}{130}{130:9300}{dim}{xpack.installed=true, box_type=hot} elect leader]] | 
| 00:52:37.584 | DEBUG | took [200ms] to compute cluster state update for [elected-as-master ([2] nodes joined)[{hot}{g7zfvt_3QI6cW6ugxIkSRw}{bELGusphTpy6RBeArNo8MA}{129}{129:9300}{dim}{xpack.installed=true, box_type=hot} elect leader, {hot}{GDyoKXPmQyC42JBjNP0tzA}{llkC7-LgQbi4BdcPiX_oOA}{130}{130:9300}{dim}{xpack.installed=true, box_type=hot} elect leader, _BECOME_MASTER_TASK_, _FINISH_ELECTION_]] | 
| 00:52:37.828 | TRACE | cluster state updated, source [elected-as-master ([2] nodes joined)[{hot}{g7zfvt_3QI6cW6ugxIkSRw}{bELGusphTpy6RBeArNo8MA}{129}{129:9300}{dim}{xpack.installed=true, box_type=hot} elect leader, {hot}{GDyoKXPmQyC42JBjNP0tzA}{llkC7-LgQbi4BdcPiX_oOA}{130}{130:9300}{dim}{xpack.installed=true, box_type=hot} elect leader, _BECOME_MASTER_TASK_, _FINISH_ELECTION_]] | 
问题分析
综合上述日志、集群状态及近期所做的操作后,发现这是由于为解决前期ES集群SSD磁盘IO不均,部分磁盘达到IO上限的问题,为平衡各节点、各SSD磁盘的IO,将index的shard均匀分配至每个节点的每块SSD上,增加了在每个节点上的shard分配数量。这虽然避免了热点盘的问题,有效地均衡了磁盘IO,但导致了shard数目的快速增加 (之前集群shard总数一般控制在2万左右,出现问题时集群shard数目接近6万)进而触发如下ES bug(该bug在ES 7.6及以上版本被修复),导致平时可以在短时间内正常完成的处理(freeze index,delete index,create index)长时间不能完成,同时造成master节点负载过高,最终出现大量处理超时等错误:
-  
https://github.com/elastic/elasticsearch/pull/47817
 -  
https://github.com/elastic/elasticsearch/issues/46941
 -  
https://github.com/elastic/elasticsearch/pull/48579
 
这3个bug所表述的事情是同一个,即:为了确定节点中一个shard是否需要发生移动,ES集群需要查看集群中所有shard是否处于RELOCATING或者INITIALIZING状态,以获取其shard的大小。在bug未修复版本中,集群里的每个shard都会重复上述操作,而这些工作都由master节点通过实时计算来完成。当集群的shard数增多后,master节点计算工作量会急剧上升,从而导致master节点处理缓慢,引发一系列的问题。由于集群shard数上升,导致master节点的工作负载急剧上升,出现相关处理缓慢的情况,进而导致以下问题:
(1)Master节点由于负载过高长时间不能响应其他节点的请求导致超时,进而触发集群重新选主,但由于新选出的Master仍然不能承载集群相关工作,再次导致超时,再次触发重新选主,周而复始,最后集群异常。
(2)Master节点处理缓慢,导致大面积作业堆积(冷冻索引、创建索引、删除索引、数据迁移等作业)
该问题最早是由华为工程师发现并提交社区的,相关堆栈信息为:
"elasticsearch[iZ2ze1ymtwjqspsn3jco0tZ][masterService#updateTask][T#1]" #39 daemon prio=5 os_prio=0 cpu=150732651.74ms elapsed=258053.43s tid=0x00007f7c98012000 nid=0x3006 runnable  [0x00007f7ca28f8000]java.lang.Thread.State: RUNNABLEat java.util.Collections$UnmodifiableCollection$1.hasNext(java.base@13/Collections.java:1046)at org.elasticsearch.cluster.routing.RoutingNode.shardsWithState(RoutingNode.java:148)at org.elasticsearch.cluster.routing.allocation.decider.DiskThresholdDecider.sizeOfRelocatingShards(DiskThresholdDecider.java:111)at org.elasticsearch.cluster.routing.allocation.decider.DiskThresholdDecider.getDiskUsage(DiskThresholdDecider.java:345)at org.elasticsearch.cluster.routing.allocation.decider.DiskThresholdDecider.canRemain(DiskThresholdDecider.java:290)at org.elasticsearch.cluster.routing.allocation.decider.AllocationDeciders.canRemain(AllocationDeciders.java:108)at org.elasticsearch.cluster.routing.allocation.allocator.BalancedShardsAllocator$Balancer.decideMove(BalancedShardsAllocator.java:668)at org.elasticsearch.cluster.routing.allocation.allocator.BalancedShardsAllocator$Balancer.moveShards(BalancedShardsAllocator.java:628)at org.elasticsearch.cluster.routing.allocation.allocator.BalancedShardsAllocator.allocate(BalancedShardsAllocator.java:123)at org.elasticsearch.cluster.routing.allocation.AllocationService.reroute(AllocationService.java:405)at org.elasticsearch.cluster.routing.allocation.AllocationService.reroute(AllocationService.java:370)at org.elasticsearch.cluster.metadata.MetaDataIndexStateService$1$1.execute(MetaDataIndexStateService.java:168)at org.elasticsearch.cluster.ClusterStateUpdateTask.execute(ClusterStateUpdateTask.java:47)at org.elasticsearch.cluster.service.MasterService.executeTasks(MasterService.java:702)at org.elasticsearch.cluster.service.MasterService.calculateTaskOutputs(MasterService.java:324)at org.elasticsearch.cluster.service.MasterService.runTasks(MasterService.java:219)at org.elasticsearch.cluster.service.MasterService.access$000(MasterService.java:73)at org.elasticsearch.cluster.service.MasterService$Batcher.run(MasterService.java:151)at org.elasticsearch.cluster.service.TaskBatcher.runIfNotProcessed(TaskBatcher.java:150)at org.elasticsearch.cluster.service.TaskBatcher$BatchedTask.run(TaskBatcher.java:188)at org.elasticsearch.common.util.concurrent.ThreadContext$ContextPreservingRunnable.run(ThreadContext.java:703)at org.elasticsearch.common.util.concurrent.PrioritizedEsThreadPoolExecutor$TieBreakingPrioritizedRunnable.runAndClean(PrioritizedEsThreadPoolExecutor.java:252)at org.elasticsearch.common.util.concurrent.PrioritizedEsThreadPoolExecutor$TieBreakingPrioritizedRunnable.run(PrioritizedEsThreadPoolExecutor.java:215)at java.util.concurrent.ThreadPoolExecutor.runWorker(java.base@13/ThreadPoolExecutor.java:1128)at java.util.concurrent.ThreadPoolExecutor$Worker.run(java.base@13/ThreadPoolExecutor.java:628)at java.lang.Thread.run(java.base@13/Thread.java:830)
 
    /*** Determine the shards with a specific state* @param states set of states which should be listed* @return List of shards*/public List<ShardRouting> shardsWithState(ShardRoutingState... states) {List<ShardRouting> shards = new ArrayList<>();for (ShardRouting shardEntry : this) {for (ShardRoutingState state : states) {if (shardEntry.state() == state) {shards.add(shardEntry);}}}return shards;}
 
在shardsWithState中会对所有shard进行遍历找到符合状态的shard,并返回。在ES7.2后由于pr#39499功能的引入,导致即使index被关闭也将被统计,随着集群shard数的增加需要遍历的工作量急剧增加,导致处理缓慢
下面是ES官方给出的统计数据:
Shards Nodes Shards per node Reroute time without relocations Reroute time with relocations 60000 10 6000 ~250ms ~15000ms 60000 60 1000 ~250ms ~4000ms 10000 10 1000 ~60ms ~250ms 由此可见即使在正常情况下,随着集群shard数的增加系统的处理耗时也是在快速增加的,需要进行优化
代码改进
为修复该问题,在新版本的ES中修改了RoutingNode的结构,在原来的基础上新增了两个LinkedHashSet结构的initializingShards和relocatingShards,分别用来存储INITIALIZING状态和RELOCATING状态的shard。在其构造函数中添加了对shard分类的逻辑,将INITIALIZING状态和RELOCATING状态的shard信息分别存储在两个LinkedHashSet结构中,具体代码如下:
+   private final LinkedHashSet<ShardRouting> initializingShards;
+   private final LinkedHashSet<ShardRouting> relocatingShards;RoutingNode(String nodeId, DiscoveryNode node, LinkedHashMap<ShardId, ShardRouting> shards) {this.nodeId = nodeId;this.node = node;this.shards = shards;
+       this.relocatingShards = new LinkedHashSet<>();
+       this.initializingShards = new LinkedHashSet<>();
+       for (ShardRouting shardRouting : shards.values()) {
+           if (shardRouting.initializing()) {
+               initializingShards.add(shardRouting);
+           } else if (shardRouting.relocating()) {
+               relocatingShards.add(shardRouting);
+           }
+        }
+       assert invariant();
}
 
由于RoutingNode的结构中新增了initializingShards和relocatingShards,所以其add、update、remove、numberOfShardsWithState和shardsWithState也需要同步做改动,具体如下:
void add(ShardRouting shard) {
+       assert invariant();if (shards.containsKey(shard.shardId())) {throw new IllegalStateException("Trying to add a shard " + shard.shardId() + " to a node [" + nodeId+ "] where it already exists. current [" + shards.get(shard.shardId()) + "]. new [" + shard + "]");}shards.put(shard.shardId(), shard);+       if (shard.initializing()) {
+           initializingShards.add(shard);
+       } else if (shard.relocating()) {
+           relocatingShards.add(shard);
+       }
+       assert invariant();}
 
void update(ShardRouting oldShard, ShardRouting newShard) {
+       assert invariant();if (shards.containsKey(oldShard.shardId()) == false) {// Shard was already removed by routing nodes iterator// TODO: change caller logic in RoutingNodes so that this check can go awayreturn;}ShardRouting previousValue = shards.put(newShard.shardId(), newShard);assert previousValue == oldShard : "expected shard " + previousValue + " but was " + oldShard;+       if (oldShard.initializing()) {
+           boolean exist = initializingShards.remove(oldShard);
+           assert exist : "expected shard " + oldShard + " to exist in initializingShards";
+       } else if (oldShard.relocating()) {
+           boolean exist = relocatingShards.remove(oldShard);
+           assert exist : "expected shard " + oldShard + " to exist in relocatingShards";
+       }
+       if (newShard.initializing()) {
+           initializingShards.add(newShard);
+       } else if (newShard.relocating()) {
+           relocatingShards.add(newShard);
+       }
+       assert invariant();}
 
void remove(ShardRouting shard) {
+       assert invariant();ShardRouting previousValue = shards.remove(shard.shardId());assert previousValue == shard : "expected shard " + previousValue + " but was " + shard;
+       if (shard.initializing()) {
+           boolean exist = initializingShards.remove(shard);
+           assert exist : "expected shard " + shard + " to exist in initializingShards";
+       } else if (shard.relocating()) {
+           boolean exist = relocatingShards.remove(shard);
+           assert exist : "expected shard " + shard + " to exist in relocatingShards";
+       }
+       assert invariant();
+    }
 
public int numberOfShardsWithState(ShardRoutingState... states) {
+       if (states.length == 1) {
+           if (states[0] == ShardRoutingState.INITIALIZING) {
+               return initializingShards.size();
+           } else if (states[0] == ShardRoutingState.RELOCATING) {
+               return relocatingShards.size();
+           }
+       }int count = 0;for (ShardRouting shardEntry : this) {for (ShardRoutingState state : states) {if (shardEntry.state() == state) {count++;}}}return count;}
 
public List<ShardRouting> shardsWithState(String index, ShardRoutingState... states) {List<ShardRouting> shards = new ArrayList<>();+       if (states.length == 1) {
+           if (states[0] == ShardRoutingState.INITIALIZING) {
+               for (ShardRouting shardEntry : initializingShards) {
+                if (shardEntry.getIndexName().equals(index) == false) {
+                    continue;
+                }
+                shards.add(shardEntry);
+            }
+            return shards;
+        } else if (states[0] == ShardRoutingState.RELOCATING) {
+            for (ShardRouting shardEntry : relocatingShards) {
+                if (shardEntry.getIndexName().equals(index) == false) {
+                    continue;
+                }
+                shards.add(shardEntry);
+            }
+            return shards;
+          }
+       }for (ShardRouting shardEntry : this) {if (!shardEntry.getIndexName().equals(index)) {continue;}for (ShardRoutingState state : states) {if (shardEntry.state() == state) {shards.add(shardEntry);}}}return shards;}
 
    public int numberOfOwningShards() {
-        int count = 0;
-        for (ShardRouting shardEntry : this) {
-            if (shardEntry.state() != ShardRoutingState.RELOCATING) {
-                count++;
-            }
-        }
-
-        return count;
+        return shards.size() - relocatingShards.size();}+    private boolean invariant() {
+    
+        // initializingShards must consistent with that in shards
+        Collection<ShardRouting> shardRoutingsInitializing =
+            shards.values().stream().filter(ShardRouting::initializing).collect(Collectors.toList());
+        assert initializingShards.size() == shardRoutingsInitializing.size();
+        assert initializingShards.containsAll(shardRoutingsInitializing);+        // relocatingShards must consistent with that in shards
+        Collection<ShardRouting> shardRoutingsRelocating =
+            shards.values().stream().filter(ShardRouting::relocating).collect(Collectors.toList());
+        assert relocatingShards.size() == shardRoutingsRelocating.size();
+        assert relocatingShards.containsAll(shardRoutingsRelocating);+        return true;
+    }
 
上面的add、update、remove方法的开始和结尾处都添加了assert invariant(),这个确保了initializingShards和relocatingShards中存储的INITIALIZING状态和RELOCATING状态的shard在任何时候都是最新的,但是,随着shard的数量级的增长,invariant()方法花费的时间也会增大,所以在shard进行add、update、remove操作时所耗费的时间也会增大。
该修复通过使用两个LinkedHashSet结构来存储initializingShards和relocatingShards的信息,同时在每次shard更新时同步更新LinkedHashSet里面的信息,由此降低了每次使用时都需要重新统计全量shard信息的开销,提高了处理效率。该问题在ES 7.2-7.5间的版本上,当集群shard超过50000以上就极有可能触发。BUG在ES 7.6上被修复。
3.问题处理
当时为快速恢复服务,对集群进行了重启操作。但集群相关作业处理仍然很慢,整个恢复过程持续很长时间。后续我们的处理方法是:
-  
临时设置设置集群参数"cluster.routing.allocation.disk.include_relocations":"false"(不推荐使用,在ES 7.5后该参数被废弃。在磁盘使用率接近高水位时会出现错误的计算,导致频繁的数据迁移)
 -  
减少集群的shard数目,缩短在线数据查询时间范围为最近20天,目前控制集群shard总数在5万左右
 
上面的处理方法只能缓解问题,没有从根本上解决,如果要解决该问题可以进行以下处理:
-  
升级ES的版本至已修复bug的版本
 -  
控制集群总shard数目在合理范围内
 
相关文章:
Elasticsearch集群shard过多后导致的性能问题分析
1.问题现象 上午上班以后发现ES日志集群状态不正确,集群频繁地重新发起选主操作。对外不能正常提供数据查询服务,相关日志数据入库也产生较大延时 2.问题原因 相关日志 查看ES集群日志如下: 00:00:51开始集群各个节点与当时的master节点…...
Unity框架学习--5 事件中心管理器
作用:访问其它脚本时,不直接访问,而是通过发送一条“命令”,让监听了这条“命令”的脚本自动执行对应的逻辑。 原理: 1、让脚本向事件中心添加事件,监听对应的“命令”。 2、发送“命令”,事件…...
(二)结构型模式:3、过滤器模式(Filter、Criteria Pattern)(C++示例)
目录 1、过滤器模式(Filter、Criteria Pattern)含义 2、过滤器模式应用场景 3、过滤器模式主要几个关键角色 4、C实现过滤器模式的示例 1、过滤器模式(Filter、Criteria Pattern)含义 (1)过滤器模式是…...
谷歌在Chrome浏览器中推进抗量子加密技术
近日,Chromium博客上发表的一篇博文称,为了加强网络安全,应对迫在眉睫的量子计算机威胁,谷歌各个团队密切合作,为网络向抗量子密码学的过渡做好准备。 谷歌的Chrome团队在博客中写道,该项目涉及修订技术标准…...
Kotlin的数组
在 Kotlin 中,数组是一种固定大小的有序集合,可以存储相同类型的元素。Kotlin 提供了两种类型的数组:原生数组和数组类。以下是 Kotlin 中数组的详细使用方法: 1.创建数组 Kotlin 支持使用 arrayOf() 函数来创建数组:…...
centos 安装docker
1.更新你的系统: sudo yum update -y2.安装必需的软件包: Docker 需要 yum-utils, device-mapper-persistent-data 和 lvm2 软件包来运行。安装它们: sudo yum install -y yum-utils device-mapper-persistent-data lvm23.设置 Docker 的仓库: 使用以下命令添加 D…...
Oracle-如何判断字符串包含中文字符串(汉字),删除中文内容及保留中文内容
今天遇见一个问题需要将字段中包含中文字符串的筛选出来 --建表 CREATE TABLE HADOOP1.AAA ( ID VARCHAR2(255) ); --添加字段INSERT INTO HADOOP1.AAA(ID)VALUES(理解);....--查询表内容SELECT * FROM HADOOP1.AAA;在网上查找了一下有以下三种方式: 第一种&#…...
File 类的用法, InputStream和Reader, OutputStream和Writer 的用法
前言 普通的文件长这样: 其实目录也是一种特殊文件: 一、文件前缀知识 (一)绝对路径和相对路径 以盘符开头的的路径,叫做绝对路径,如:D:\360Downloads\cat.jpg 以.或..开头的路径,…...
AtCoder Beginner Contest 315 Task:A/B/C/E
A - tcdr 处理字符串简单题,题目要求去除字符串中的a,e,i,o,u即可 #include<iostream> using namespace std; int main() {string s;cin>>s;for(int i0;i<s.length();i){if(s[i]a||s[i]e||s[i]i||s[i]o||s[i]u)continue;cout<<s[i];} }B - T…...
【项目实践】基于LSTM的一维数据扩展与预测
基于LSTM的一维数据拟合扩展 一、引(fei)言(hua) 我在做Sri Lanka生态系统服务价值计算时,中间遇到了一点小问题。从世界粮农组织(FAO)上获得Sri Lanka主要农作物产量和价格数据时,其中的主要作物Sorghum仅有2001-2006年的数据,而Millet只有…...
webshell实践,在nginx上实现负载均衡
1、配置多台虚拟机,用作服务器 在不同的虚拟机上安装httpd服务 我采用了三台虚拟机进行服务器设置:192.168.240.11、192.168.240.12、192.168.240.13 [rootnode0-8 /]# yum install httpd -y #使用yum安装httpd服务#开启httpd服务 [rootnode0-8 /]# …...
LVS+Keepalived集群
keepalived Keepalived及其工作原理 Keepalived 是一个基于VRRP协议来实现的LVS服务高可用方案,可以解决静态路由出现的单点故障问题 在一个LVS服务集群中通常有主服务器(MASTER)和备份服务器(BACKUP)两种角色的服务…...
Java的网络编程
网络编程 两台设备之间通过网络实现数据传输,将数据通过网络从一台设备传输到另一台设备 网络 两台或多台设备通过一定物理设备连接起来构成了网络 网络又分为: 局域网:覆盖范围最小,仅仅覆盖一个教室或一个机房城域网:覆盖范围较大,可以…...
kafka配置远程连接
要想实现在本地连接服务器的kafka,则必须在远程kafka配置远程连接 默认的 kafka 配置是无法远程访问的,解决该问题有几个方案。 方案1 advertised.listenersPLAINTEXT://IP:9092 注意必须是 ip,不能是 hostname 方案2 advertised.listene…...
css实现渐变色border
方式1 div {border: 4px solid;border-image: linear-gradient(to right, #8f41e9, #578aef) 1; }/* 或者 */ div {border: 4px solid;border-image-source: linear-gradient(to right, #8f41e9, #578aef);border-image-slice: 1; }作者:MudOnTire 链接:…...
管理 IBM Spectrum LSF
管理 IBM Spectrum LSF 了解如何管理 IBM Spectrum LSF 集群,控制守护程序,更改集群配置以及使用主机和队列。 管理 LSF 作业和作业调度策略。 查看作业信息和控制作业。 了解如何配置资源并将其分配给 LSF 作业。 了解如何在 LSF 集群中提交࿰…...
117页数字化转型与产业互联网发展趋势及机会分析报告PPT
导读:原文《》(获取来源见文尾),本文精选其中精华及架构部分,逻辑清晰、内容完整,为快速形成售前方案提供参考。 喜欢文章,您可以点赞评论转发本文,了解更多内容请私信:方…...
【JavaWeb】实训的长篇笔记(上)
JavaWeb的实训是学校的一门课程,老师先讲解一些基础知识,然后让我们自己开发一个比较简单的Web程序。可涉及的知识何其之多,不是实训课的 3 周时间可以讲得完的,只是快速带过。他说:重点是Web开发的流程。 我的实训草草…...
如何使用Docker安装AWVS?
前言 还记得很早的时候使用AWVS,还需要找位置,贴补丁,放文件,现在慢慢掌握Docker后发现,使用Docker去部署一些东西就很方便,当然也包括AWVS。 我们今天带大家通过Docker部署AWVS(有中文哦&…...
vue命名规范
文件和文件夹的命名: 文件夹命名: Vue 项目中通常可以根据功能或页面来划分文件夹。例如,您可以为每个页面创建一个文件夹,并将相关的组件、样式和资源文件放在其中。文件夹的命名最好使用短横线分隔的小写字母(kebab …...
label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...
Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...
【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)
LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 题目描述解题思路Java代码 题目描述 题目链接:LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...
论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving
地址:LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂,正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...
FFmpeg avformat_open_input函数分析
函数内部的总体流程如下: avformat_open_input 精简后的代码如下: int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...
