深入浅出Pytorch函数——torch.nn.init.sparse_
分类目录:《深入浅出Pytorch函数》总目录
相关文章:
· 深入浅出Pytorch函数——torch.nn.init.calculate_gain
· 深入浅出Pytorch函数——torch.nn.init.uniform_
· 深入浅出Pytorch函数——torch.nn.init.normal_
· 深入浅出Pytorch函数——torch.nn.init.constant_
· 深入浅出Pytorch函数——torch.nn.init.ones_
· 深入浅出Pytorch函数——torch.nn.init.zeros_
· 深入浅出Pytorch函数——torch.nn.init.eye_
· 深入浅出Pytorch函数——torch.nn.init.dirac_
· 深入浅出Pytorch函数——torch.nn.init.xavier_uniform_
· 深入浅出Pytorch函数——torch.nn.init.xavier_normal_
· 深入浅出Pytorch函数——torch.nn.init.kaiming_uniform_
· 深入浅出Pytorch函数——torch.nn.init.kaiming_normal_
· 深入浅出Pytorch函数——torch.nn.init.trunc_normal_
· 深入浅出Pytorch函数——torch.nn.init.orthogonal_
· 深入浅出Pytorch函数——torch.nn.init.sparse_
torch.nn.init模块中的所有函数都用于初始化神经网络参数,因此它们都在torc.no_grad()模式下运行,autograd不会将其考虑在内。
根据Martens, J等人在《Deep learning via Hessian-free optimization》中描述的方法,将2维的输入张量或变量当做稀疏矩阵填充,其中非零元素生成自 N ( 0 , std 2 ) N(0, \text{std}^2) N(0,std2)。
语法
torch.nn.init.sparse_(tensor, sparsity, std=0.01)
参数
tensor:[Tensor] 一个 N N N维张量torch.Tensorsparsity:每列中需要被设置成零的元素比例std:用于生成非零值的正态分布的标准差
返回值
一个torch.Tensor且参数tensor也会更新
实例
w = torch.empty(3, 5)
nn.init.sparse_(w, sparsity=0.1)
函数实现
def sparse_(tensor, sparsity, std=0.01):r"""Fills the 2D input `Tensor` as a sparse matrix, where thenon-zero elements will be drawn from the normal distribution:math:`\mathcal{N}(0, 0.01)`, as described in `Deep learning viaHessian-free optimization` - Martens, J. (2010).Args:tensor: an n-dimensional `torch.Tensor`sparsity: The fraction of elements in each column to be set to zerostd: the standard deviation of the normal distribution used to generatethe non-zero valuesExamples:>>> w = torch.empty(3, 5)>>> nn.init.sparse_(w, sparsity=0.1)"""if tensor.ndimension() != 2:raise ValueError("Only tensors with 2 dimensions are supported")rows, cols = tensor.shapenum_zeros = int(math.ceil(sparsity * rows))with torch.no_grad():tensor.normal_(0, std)for col_idx in range(cols):row_indices = torch.randperm(rows)zero_indices = row_indices[:num_zeros]tensor[zero_indices, col_idx] = 0return tensor
相关文章:
深入浅出Pytorch函数——torch.nn.init.sparse_
分类目录:《深入浅出Pytorch函数》总目录 相关文章: 深入浅出Pytorch函数——torch.nn.init.calculate_gain 深入浅出Pytorch函数——torch.nn.init.uniform_ 深入浅出Pytorch函数——torch.nn.init.normal_ 深入浅出Pytorch函数——torch.nn.init.c…...
OpenCV实现BGR2BayerGB/BG格式的转换
1、说明 OpenCV没有提供从BGR生成Bayer格式的接口,需要自己写 OpenCV定义为4种格式,分别为: BGGR排列 -> RG格式 RGGB排列 -> BG格式 GRBG排列 -> GB格式 GBRG排列 -> GR格式 2、转换 void CUtils::BGR2BayerGB(const cv::Mat &matSrc, cv::Mat &matDst)…...
Gateway网关路由以及predicates用法(项目中使用场景)
1.Gatewaynacos整合微服务 服务注册在nacos上,通过Gateway路由网关配置统一路由访问 这里主要通过yml方式说明: route: config: #type:database nacos yml data-type: yml group: DEFAULT_GROUP data-id: jeecg-gateway-router 配置路由:…...
深入浅出Pytorch函数——torch.nn.init.constant_
分类目录:《深入浅出Pytorch函数》总目录 相关文章: 深入浅出Pytorch函数——torch.nn.init.calculate_gain 深入浅出Pytorch函数——torch.nn.init.uniform_ 深入浅出Pytorch函数——torch.nn.init.normal_ 深入浅出Pytorch函数——torch.nn.init.c…...
centos mysql8解决Access denied for user ‘root‘@‘localhost‘ (using password: YES)
环境 系统:CentOS Stream release 9 mysql版本:mysql Ver 8.0.34 for Linux on x86_64 问题 mysql登录提示 Access denied for user rootlocalhost (using password: YES)解决方法 编辑 /etc/my.cnf ,在[mysqld] 部分最后添加一行 skip-…...
Docker实战:Docker常用命令
一、镜像相关 1.1、查看镜像 docker images1.2、拉取镜像 docker pull nginx1.3、保存镜像 docker save -o nginx.tar nginx:latest1.4、移除镜像 docker rmi -f nginx:latest1.5、导入镜像 docker load -i nginx.tar二、容器相关 2.1、启动容器 docker run --name red…...
基于51单片机直流电机转速数码管显示控制系统
一、系统方案 本文主要研究了利用MCS-51系列单片机控制PWM信号从而实现对直流电机转速进行控制的方法。本文中采用了三极管组成了PWM信号的驱动系统,并且对PWM信号的原理、产生方法以及如何通过软件编程对PWM信号占空比进行调节,从而控制其输入信号波形等…...
小程序商品如何指定打印机
有些商家,可能有多个仓库。不同的仓库,存放不同的商品。当客户下单时,小程序如何自动按照仓库拆分订单,如何让打印机自动打印对应仓库的订单呢?下面就来介绍一下吧。 1. 设置订单分发模式。进入管理员后台,…...
LLaMA-7B微调记录
Alpaca(https://github.com/tatsu-lab/stanford_alpaca)在70亿参数的LLaMA-7B上进行微调,通过52k指令数据(https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json),在8个80GB A100上训…...
域名子目录发布问题(nginx、vue-element-admin、uni-app)
域名子目录发布问题(nginx、vue-element-admin、uni-app) 说明Vue-Element-Admin 代码打包nginx配置:uni-app打包 说明 使用一个域名下子目录进行打包: 比如: http://www.xxx.com/merchant 商户端代码 http://www.xx…...
【环境配置】Windows 10 安装 PyTorch 开发环境,以及验证 YOLOv8
Windows 10 安装 PyTorch 开发环境,以及验证 YOLOv8 最近搞了一台Windows机器,准备在上面安装深度学习的开发环境,并搭建部署YOLOv8做训练和测试使用; 环境: OS: Windows 10 显卡: RTX 3090 安…...
数学建模之“层次分析法”原理和代码详解
一、层次分析法简介 层次分析法(Analytic Hierarchy Process,AHP)是一种用于多准则决策分析和评估问题的定量方法,常用于数学建模中。它是由数学家托马斯赛蒂(Thomas Saaty)开发的。 层次分析法将复杂的决…...
使用IText导出复杂pdf
1、问题描述 需要将发票导出成pdf,要求每页都必须包含发票信息和表头行。 2、解决方法 使用IText工具实现PDF导出 IText8文档:Examples (itextpdf.com) 3、我的代码 引入Itext依赖,我这里用的是8.0.1版本 <dependency><groupId>…...
多线程并发服务器(TCP)
服务器 客户端 结果...
uni-app的Vue.js实现微信小程序的紧急事件登记页面功能
主要功能实现 完成发生时间选择功能,用户可以通过日期选择器选择事件发生的时间。实现事件类型选择功能,用户可以通过下拉选择框选择事件的类型。添加子养殖场编号输入框,用户可以输入与事件相关的子养殖场编号。完成事件描述输入功能&#…...
面试题 17.16.按摩师
题目来源: leetcode题目,网址:面试题 17.16. 按摩师 - 力扣(LeetCode) 解题思路: 动态规划,对于第 i 个预约,若接下,其最大值为不接上一个时的最大值与当前值之和&a…...
vscode里配置C#环境并运行.cs文件
vscode是一款跨平台、轻量级、开源的IDE, 支持C、C、Java、C#、R、Python、Go、Nodejs等多种语言的开发和调试。下面介绍在vscode里配置C#环境。这里以配置.Net SDK v5.0,语言版本为C#9.0,对应的开发平台为VS2019,作为案例说明。 1、下载vsc…...
uniapp配置添加阿里巴巴图标icon流程步骤
文章目录 下载复制文件到项目文件夹里项目配置目录结构显示图标 下载 阿里巴巴icon官网 https://www.iconfont.cn/ 复制文件到项目文件夹里 项目配置目录结构 显示图标...
大模型基础02:GPT家族与提示学习
大模型基础:GPT 家族与提示学习 从 GPT-1 到 GPT-3.5 GPT(Generative Pre-trained Transformer)是 Google 于2018年提出的一种基于 Transformer 的预训练语言模型。它标志着自然语言处理领域从 RNN 时代进入 Transformer 时代。GPT 的发展历史和技术特点如下: GP…...
算法基础课——基础算法(模板整理)
快速排序 快速排序 #include <iostream> #include <algorithm> using namespace std; int n; int s[100000]; int main() {cin>>n;for(int i0;i<n;i){cin>>s[i];}sort(s,sn);for(int i0;i<n;i){cout<<s[i]<<" ";}cout<…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
数据结构:递归的种类(Types of Recursion)
目录 尾递归(Tail Recursion) 什么是 Loop(循环)? 复杂度分析 头递归(Head Recursion) 树形递归(Tree Recursion) 线性递归(Linear Recursion)…...
