【环境配置】Windows 10 安装 PyTorch 开发环境,以及验证 YOLOv8
Windows 10 安装 PyTorch 开发环境,以及验证 YOLOv8
最近搞了一台Windows机器,准备在上面安装深度学习的开发环境,并搭建部署YOLOv8做训练和测试使用;
环境:
OS: Windows 10
显卡: RTX 3090

安装 NVIDIA 驱动
根据显卡型号找到对应的驱动进行安装
GeForce® 驱动程序
验证
在终端中输入: nvidia-smi 查看是否正确安装
PS F:\workspace\notebook> nvidia-smi
Tue Aug 15 09:23:21 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 528.24 Driver Version: 528.24 CUDA Version: 12.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 NVIDIA GeForce ... WDDM | 00000000:01:00.0 On | N/A |
| 30% 38C P8 19W / 350W | 782MiB / 24576MiB | 4% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 1620 C+G C:\Windows\System32\dwm.exe N/A |
| 0 N/A N/A 1908 C+G ...ge\Application\msedge.exe N/A |
安装 Visual Studio 2019 Community
安装 VS2019 Visual Studio Community 2019
验证

安装 Git, CMake, Anaconda
安装 git,
tortoisegit 可以看文件状态
安装 cmake, 跨平台编译时使用;
安装 Anaconda,集成了很多 python 开发环境
验证
下载并安装 OpenCV
OpenCV 下载地址
| VC版本号 | VS对应版本 |
|---|---|
| vc6 | VC6.0 |
| vc7 | VS2002 |
| vc7.1 | VS2003 |
| vc8 | VS2005 |
| vc9 | VS2008 |
| vc10 | VS2010 |
| vc11 | VS2012 |
| vc12 | VS2013 |
| vc13 | VS2014 |
| vc14 | VS2015 |
| vc15 | VS2017 |
| vc16 | VS2019 |
既然上面安装的是 VS 2019, 那么我们就安装 VC16 版本的 OpenCV, 省得自己编译了;
解压安装后,将 build 目录下的 x64\vc16\bin 添加到环境变量中。
安装 CUDA 和 CUDNN
这里有些人可能不知道需要安装什么版本的 cuda。因为我这里的 GPU 是 N卡 3090 还是比较好的,所以可以安装比较高阶版本的软件,但是也不能太新,我这里直接参考 PyTorch 里最新版本的框架依赖哪个?
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MNJC1PNc-1692070277630)(image.png)]
好了,那就安装 CUDA 11.8 和对应的 CUDNN 8 ;
cuda11.8-exe_local-3GB
cudnn 下载对应版本
注意: cudnn 要注册账号
解压后,将 cudnn 文件夹下的所有文件夹复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\ 目录下。
验证
(base) D:\>nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2022 NVIDIA Corporation
Built on Wed_Sep_21_10:41:10_Pacific_Daylight_Time_2022
Cuda compilation tools, release 11.8, V11.8.89
Build cuda_11.8.r11.8/compiler.31833905_0
进入到安装目录 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\extras\demo_suite, 运行 .\deviceQuery.exe

安装 PyTorch
PyTorch
conda 安装
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
pip 安装
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
验证
(base) D:\>python
Python 3.11.4 | packaged by Anaconda, Inc. | (main, Jul 5 2023, 13:38:37) [MSC v.1916 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> print(torch.__version__)
2.0.1
>>> torch.cuda.is_available()
True
>>>
ultralytics/YOLOv8
创建虚拟环境
conda create --name yolov8 --clone base
激活虚拟环境
conda activate yolov8
安装
pip install ultralytics
代码 https://github.com/ultralytics/ultralytics
权重 https://github.com/ultralytics/assets/releases
验证
yolo predict model=yolov8n.pt imgsz=640 conf=0.25
(yolov8) F:\workspace\yolov8>yolo predict model=yolov8n.pt imgsz=640 conf=0.25
WARNING 'source' is missing. Using default 'source=D:\anaconda3\envs\yolov8\Lib\site-packages\ultralytics\assets'.
Ultralytics YOLOv8.0.154 Python-3.11.4 torch-2.0.1 CUDA:0 (NVIDIA GeForce RTX 3090, 24576MiB)
YOLOv8n summary (fused): 168 layers, 3151904 parameters, 0 gradientsimage 1/2 D:\anaconda3\envs\yolov8\Lib\site-packages\ultralytics\assets\bus.jpg: 640x480 4 persons, 1 bus, 1 stop sign, 160.2ms
image 2/2 D:\anaconda3\envs\yolov8\Lib\site-packages\ultralytics\assets\zidane.jpg: 384x640 2 persons, 1 tie, 154.0ms
Speed: 41.6ms preprocess, 157.1ms inference, 72.6ms postprocess per image at shape (1, 3, 384, 640)
Results saved to runs\detect\predict
【参考】
Windows 安装 CUDA/cuDNN
验证pytorch是否为GPU版本
YOLOv8环境搭建(Windows11)
YOLOv8 从环境搭建到推理训练
Ultralytics YOLOv8 Docs-Quickstart
Anaconda 创建,复制,移植,删除环境
相关文章:
【环境配置】Windows 10 安装 PyTorch 开发环境,以及验证 YOLOv8
Windows 10 安装 PyTorch 开发环境,以及验证 YOLOv8 最近搞了一台Windows机器,准备在上面安装深度学习的开发环境,并搭建部署YOLOv8做训练和测试使用; 环境: OS: Windows 10 显卡: RTX 3090 安…...
数学建模之“层次分析法”原理和代码详解
一、层次分析法简介 层次分析法(Analytic Hierarchy Process,AHP)是一种用于多准则决策分析和评估问题的定量方法,常用于数学建模中。它是由数学家托马斯赛蒂(Thomas Saaty)开发的。 层次分析法将复杂的决…...
使用IText导出复杂pdf
1、问题描述 需要将发票导出成pdf,要求每页都必须包含发票信息和表头行。 2、解决方法 使用IText工具实现PDF导出 IText8文档:Examples (itextpdf.com) 3、我的代码 引入Itext依赖,我这里用的是8.0.1版本 <dependency><groupId>…...
多线程并发服务器(TCP)
服务器 客户端 结果...
uni-app的Vue.js实现微信小程序的紧急事件登记页面功能
主要功能实现 完成发生时间选择功能,用户可以通过日期选择器选择事件发生的时间。实现事件类型选择功能,用户可以通过下拉选择框选择事件的类型。添加子养殖场编号输入框,用户可以输入与事件相关的子养殖场编号。完成事件描述输入功能&#…...
面试题 17.16.按摩师
题目来源: leetcode题目,网址:面试题 17.16. 按摩师 - 力扣(LeetCode) 解题思路: 动态规划,对于第 i 个预约,若接下,其最大值为不接上一个时的最大值与当前值之和&a…...
vscode里配置C#环境并运行.cs文件
vscode是一款跨平台、轻量级、开源的IDE, 支持C、C、Java、C#、R、Python、Go、Nodejs等多种语言的开发和调试。下面介绍在vscode里配置C#环境。这里以配置.Net SDK v5.0,语言版本为C#9.0,对应的开发平台为VS2019,作为案例说明。 1、下载vsc…...
uniapp配置添加阿里巴巴图标icon流程步骤
文章目录 下载复制文件到项目文件夹里项目配置目录结构显示图标 下载 阿里巴巴icon官网 https://www.iconfont.cn/ 复制文件到项目文件夹里 项目配置目录结构 显示图标...
大模型基础02:GPT家族与提示学习
大模型基础:GPT 家族与提示学习 从 GPT-1 到 GPT-3.5 GPT(Generative Pre-trained Transformer)是 Google 于2018年提出的一种基于 Transformer 的预训练语言模型。它标志着自然语言处理领域从 RNN 时代进入 Transformer 时代。GPT 的发展历史和技术特点如下: GP…...
算法基础课——基础算法(模板整理)
快速排序 快速排序 #include <iostream> #include <algorithm> using namespace std; int n; int s[100000]; int main() {cin>>n;for(int i0;i<n;i){cin>>s[i];}sort(s,sn);for(int i0;i<n;i){cout<<s[i]<<" ";}cout<…...
如何解决使用npm出现Cannot find module ‘XXX\node_modules\npm\bin\npm-cli.js’错误
遇到问题:用npm下载组件时出现Cannot find module ‘D:software\node_modules\npm\bin\npm-cli.js’ 问题,导致下载组件不能完成。 解决方法:下载缺少的npm文件即可解决放到指定node_modules目录下即可解决。 分析问题࿱…...
【华为认证数通高级证书实验-分享篇2】
实验拓扑 注:代码块为各交换机路由器中的配置命令 配置拓扑文件 实验要求 实现全网通 实验配置 SW3 [SW3]v b 10 20 [SW3]int e0/0/1 [SW3-Ethernet0/0/1]po link-t a [SW3-Ethernet0/0/1]po de v 10 [SW3-Ethernet0/0/1]int e0/0/2 [SW3-Ethernet0/0/2]po li…...
ui设计需要学编程吗难不难学习 优漫动游
ui设计需要学编程吗难不难学习,对于基础小白来说学习编程确实有一定难度,所以很想知道零基础学习ui设计需要学编程吗,需不需要写代码呢,这些问题小编来简单的分析分析解决零基础小白的一些困惑,希望对你有帮助。 ui…...
什么是线程优先级?Java中的线程优先级是如何定义和使用的?
线程优先级是指在多线程环境中,通过给线程分配不同的优先级来决定线程获取CPU时间片的顺序。优先级较高的线程会更有可能被调度执行,而优先级较低的线程可能会获得较少的CPU时间。 在Java中,线程优先级是通过整数表示的,范围从1到…...
无涯教程-TensorFlow - XOR实现
在本章中,无涯教程将学习使用TensorFlow的XOR实现,在TensorFlow中开始XOR实施之前,看一下XOR表值。这将帮助了解加密和解密过程。 A B A XOR B 0 0 0 0 1 1 1 0 1 1 1 0 XOR密码加密方法基本上用于加密,即通过生成与适当密钥匹配…...
计算机组成与设计 Patterson Hennessy 笔记(二)MIPS 指令集
计算机的语言:汇编指令集 也就是指令集。本书主要介绍 MIPS 指令集。 汇编指令 算数运算: add a,b,c # abc sub a,b,c # ab-cMIPS 汇编的注释是 # 号。 由于MIPS中寄存器大小32位,是基本访问单位,因此也被称为一个字 word。M…...
【设计模式】模板方法模式(Template Method Pattern)
23种设计模式之模板方法模式(Template Method Pattern) 基本概念 模板方法模式是一种行为型设计模式,它定义了一个算法骨架,将某些算法步骤的实现延迟到子类中。 这样可以使得算法的框架不被修改,但是具体的实现可以…...
【潮州饶平】联想 IBM x3850 x6 io主板故障 服务器维修
哈喽 最近比较忙也好久没有更新服务器维修案例了,这次分享一例潮州市饶平县某企业工厂一台IBM System x3850 x6服务器亮黄灯告警且无法正常开机的服务器故障问题。潮州饶平ibm服务器维修IO主板故障问题 故障如下图所示: 故障服务器型号:IBM 或…...
【AIGC】 国内版聊天GPT
国内版聊天GPT 引言一、国内平台二、简单体验2.1 提问2.2 角色扮演2.3 总结画图 引言 ChatGPT是OpenAI发开的聊天程序,功能强大,可快速获取信息,节省用户时间和精力,提供个性化的服务。目前国产ChatGPT,比如文心一言&a…...
如何在Vue中进行单元测试?什么是Vue的模块化开发?
1、如何在Vue中进行单元测试? 在Vue中进行单元测试可以提高代码的可维护性和可读性,同时也能够帮助开发者更快地找到代码中的问题和潜在的错误。下面是一些在Vue中进行单元测试的步骤: 安装单元测试工具 首先需要安装一个单元测试工具&…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
Typeerror: cannot read properties of undefined (reading ‘XXX‘)
最近需要在离线机器上运行软件,所以得把软件用docker打包起来,大部分功能都没问题,出了一个奇怪的事情。同样的代码,在本机上用vscode可以运行起来,但是打包之后在docker里出现了问题。使用的是dialog组件,…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...
R 语言科研绘图第 55 期 --- 网络图-聚类
在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。 为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式: R 语言科研绘图模板 --- sciRplothttps://mp.…...
