当前位置: 首页 > news >正文

数学建模之“层次分析法”原理和代码详解

一、层次分析法简介

层次分析法(Analytic Hierarchy Process,AHP)是一种用于多准则决策分析和评估问题的定量方法,常用于数学建模中。它是由数学家托马斯·赛蒂(Thomas Saaty)开发的。

层次分析法将复杂的决策问题分解成多个层次,从目标层到准则层和备选方案层。具体步骤如下:

1. 确定决策目标:明确决策问题的目标,例如选择最佳方案或评估不同选项之间的优先级。

2. 构建层次结构:将决策问题分解成多个层次,包括目标层、准则层和备选方案层。目标层是最高层,准则层是中间层,包含影响决策的关键准则,备选方案层是最底层,包含可供选择的具体方案。

3. 建立比较矩阵:对于每个层次的准则和方案,构建一个比较矩阵用于评估它们之间的相对重要性或优先级。在比较矩阵中,根据一定的标度(通常是1到9的范围),比较两个元素之间的重要性,填写对应的数值。

4. 计算权重向量:通过对比较矩阵进行一系列数学运算,计算出每个层次的准则和方案的权重向量。具体的计算方法包括计算特征向量、一致性指标和一致性比率。

5. 一致性检验:通过计算一致性指标和一致性比率,检验所建立的比较矩阵的一致性。一致性检验可以评估比较矩阵是否合理和可靠。

6. 综合评估与决策:基于权重向量和一致性检验的结果,对备选方案进行综合评估,确定最佳方案或进行优先排序。

层次分析法可以帮助决策者在复杂的多准则决策问题中进行定量分析和评估,提供科学的决策依据。它在许多领域中都有广泛的应用,例如工程管理、项目选择、资源分配、商业决策等。

二、实例

例一

例题:假设你是一家电子公司的产品经理,公司计划推出一款新的智能手机。你需要对不同的功能进行评估,以确定哪些功能是最重要的。请使用层次分析法对以下四个功能进行评估:摄像头质量、处理器性能、电池续航时间和屏幕分辨率。解答:
1. 创建一个层次结构,将四个功能作为最高层次的标准。
2. 创建一个判断矩阵,将每个功能与其他功能进行比较,根据其相对重要性给出权重。
3. 计算每个功能的权重。
4. 检查一致性,确保判断矩阵的一致性。
5. 根据每个功能的权重,确定最重要的功能。具体步骤如下:
1. 创建层次结构:- 最高层次:功能- 第二层次:摄像头质量、处理器性能、电池续航时间、屏幕分辨率2. 创建判断矩阵:- 摄像头质量:1, 3, 5, 7- 处理器性能:1/3, 1, 3, 5- 电池续航时间:1/5, 1/3, 1, 3- 屏幕分辨率:1/7, 1/5, 1/3, 13. 计算权重:- 根据判断矩阵的列平均值计算每个功能的权重:- 摄像头质量:(1+3+5+7)/4 = 4- 处理器性能:(1/3+1+3+5)/4 = 2.25- 电池续航时间:(1/5+1/3+1+3)/4 = 1.08- 屏幕分辨率:(1/7+1/5+1/3+1)/4 = 0.474. 检查一致性:- 计算一致性指标 CI:(最大特征值 - 层次结构层数) / (层次结构层数 - 1) = (4 - 4) / (4 - 1) = 0- 计算一致性比例 CR:CI / RI,RI为随机一致性指标,根据层次结构层数查表得到RI=0.9- CR = 0 / 0.9 = 0,CR小于0.1,判断矩阵一致性通过。5. 确定最重要的功能:- 摄像头质量:4- 处理器性能:2.25- 电池续航时间:1.08- 屏幕分辨率:0.47根据计算结果,摄像头质量是最重要的功能,其次是处理器性能、电池续航时间和屏幕分辨率。因此,在开发智能手机时,应优先考虑提高摄像头质量。

 例二

 例三、选择旅游地

 

 

 三、MATLAB代码

使用方法
(1)构造判断矩阵A
(2)将下文代码复制粘贴到Matlab中即可
例如:A=[1 3 5;0.33 1 3;0.2 0.33,1]

disp('请输入准则层判断矩阵A(n阶)');
A=input('A=');
[n,n]=size(A);
[V,D]=eig(A);%求得特征向量和特征值
            %求出最大特征值和它所对应的特征向量
tempNum=D(1,1);%特征值的初值
pos=1;
for h=1:n
    if D(h,h)>tempNum
        tempNum=D(h,h);
        pos=h;%标记的第一个数
    end
end    

%找最大特征值及其对应的位置
w=abs(V(:,pos));%找出最大特征值对应的特征向量
w=w/sum(w);%归一化处理
t=D(pos,pos);
disp('准则层特征向量w=');disp(w);disp('准则层最大特征根t=');disp(t);
         %以下是一致性检验
CI=(t-n)/(n-1);RI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59 1.60 1.61 1.615 1.62 1.63];
CR=CI/RI(n);
if CR<0.10
    disp('此矩阵的一致性可以接受!');
    disp('CI=');disp(CI);
    disp('CR=');disp(CR);
else disp('此矩阵的一致性验证失败,请重新进行评分!');
end

四、层次分析法的几点说明

(1)系统性

把所研究的问题看成一个系统,按照分解、比较判断、综合分析的思维方式进行决策分析,也是实际中继机理分析方法、统计分析方法之后发展起来的又一个重要的系统分析工具.


(2)实用性

把定性与定量方法结合起来,能处理许多传统的优化方法无法处理的实际问题,应用范围广.而且将决策者和决策分析者联系起来,体现了决策者的主观意见,决策者可以直接应用它进行决策分析,增加了决策的有效性和实用性.

(3)简洁性

具有中等文化程度的人都可以学习掌握层次分析法的基本原理和步骤,计算也比较简便,所得结果简单明确,容易被决策者了解和掌握.

(4)层次分析法的局限性

局限性是粗略、主观.首先是它的比较、判断及结果都是粗糙的,不适于精度要求很高的问题;其次是从建立层次结构图到给出两两比较矩阵,人的主观因素作用很大,使决策结果较大程度地依赖于决策人的主观意志,可能难以为众人所接受.
 

相关文章:

数学建模之“层次分析法”原理和代码详解

一、层次分析法简介 层次分析法&#xff08;Analytic Hierarchy Process&#xff0c;AHP&#xff09;是一种用于多准则决策分析和评估问题的定量方法&#xff0c;常用于数学建模中。它是由数学家托马斯赛蒂&#xff08;Thomas Saaty&#xff09;开发的。 层次分析法将复杂的决…...

使用IText导出复杂pdf

1、问题描述 需要将发票导出成pdf&#xff0c;要求每页都必须包含发票信息和表头行。 2、解决方法 使用IText工具实现PDF导出 IText8文档&#xff1a;Examples (itextpdf.com) 3、我的代码 引入Itext依赖&#xff0c;我这里用的是8.0.1版本 <dependency><groupId>…...

多线程并发服务器(TCP)

服务器 客户端 结果...

uni-app的Vue.js实现微信小程序的紧急事件登记页面功能

主要功能实现 完成发生时间选择功能&#xff0c;用户可以通过日期选择器选择事件发生的时间。实现事件类型选择功能&#xff0c;用户可以通过下拉选择框选择事件的类型。添加子养殖场编号输入框&#xff0c;用户可以输入与事件相关的子养殖场编号。完成事件描述输入功能&#…...

面试题 17.16.按摩师

​​题目来源&#xff1a; leetcode题目&#xff0c;网址&#xff1a;面试题 17.16. 按摩师 - 力扣&#xff08;LeetCode&#xff09; 解题思路&#xff1a; 动态规划&#xff0c;对于第 i 个预约&#xff0c;若接下&#xff0c;其最大值为不接上一个时的最大值与当前值之和&a…...

vscode里配置C#环境并运行.cs文件

vscode是一款跨平台、轻量级、开源的IDE, 支持C、C、Java、C#、R、Python、Go、Nodejs等多种语言的开发和调试。下面介绍在vscode里配置C#环境。这里以配置.Net SDK v5.0&#xff0c;语言版本为C#9.0&#xff0c;对应的开发平台为VS2019&#xff0c;作为案例说明。 1、下载vsc…...

uniapp配置添加阿里巴巴图标icon流程步骤

文章目录 下载复制文件到项目文件夹里项目配置目录结构显示图标 下载 阿里巴巴icon官网 https://www.iconfont.cn/ 复制文件到项目文件夹里 项目配置目录结构 显示图标...

大模型基础02:GPT家族与提示学习

大模型基础&#xff1a;GPT 家族与提示学习 从 GPT-1 到 GPT-3.5 GPT(Generative Pre-trained Transformer)是 Google 于2018年提出的一种基于 Transformer 的预训练语言模型。它标志着自然语言处理领域从 RNN 时代进入 Transformer 时代。GPT 的发展历史和技术特点如下: GP…...

算法基础课——基础算法(模板整理)

快速排序 快速排序 #include <iostream> #include <algorithm> using namespace std; int n; int s[100000]; int main() {cin>>n;for(int i0;i<n;i){cin>>s[i];}sort(s,sn);for(int i0;i<n;i){cout<<s[i]<<" ";}cout<…...

如何解决使用npm出现Cannot find module ‘XXX\node_modules\npm\bin\npm-cli.js’错误

遇到问题&#xff1a;用npm下载组件时出现Cannot find module ‘D&#xff1a;software\node_modules\npm\bin\npm-cli.js’ 问题&#xff0c;导致下载组件不能完成。 解决方法&#xff1a;下载缺少的npm文件即可解决放到指定node_modules目录下即可解决。 分析问题&#xff1…...

【华为认证数通高级证书实验-分享篇2】

实验拓扑 注&#xff1a;代码块为各交换机路由器中的配置命令 配置拓扑文件 实验要求 实现全网通 实验配置 SW3 [SW3]v b 10 20 [SW3]int e0/0/1 [SW3-Ethernet0/0/1]po link-t a [SW3-Ethernet0/0/1]po de v 10 [SW3-Ethernet0/0/1]int e0/0/2 [SW3-Ethernet0/0/2]po li…...

ui设计需要学编程吗难不难学习 优漫动游

ui设计需要学编程吗难不难学习&#xff0c;对于基础小白来说学习编程确实有一定难度&#xff0c;所以很想知道零基础学习ui设计需要学编程吗&#xff0c;需不需要写代码呢&#xff0c;这些问题小编来简单的分析分析解决零基础小白的一些困惑&#xff0c;希望对你有帮助。 ui…...

什么是线程优先级?Java中的线程优先级是如何定义和使用的?

线程优先级是指在多线程环境中&#xff0c;通过给线程分配不同的优先级来决定线程获取CPU时间片的顺序。优先级较高的线程会更有可能被调度执行&#xff0c;而优先级较低的线程可能会获得较少的CPU时间。 在Java中&#xff0c;线程优先级是通过整数表示的&#xff0c;范围从1到…...

无涯教程-TensorFlow - XOR实现

在本章中&#xff0c;无涯教程将学习使用TensorFlow的XOR实现&#xff0c;在TensorFlow中开始XOR实施之前&#xff0c;看一下XOR表值。这将帮助了解加密和解密过程。 A B A XOR B 0 0 0 0 1 1 1 0 1 1 1 0 XOR密码加密方法基本上用于加密&#xff0c;即通过生成与适当密钥匹配…...

计算机组成与设计 Patterson Hennessy 笔记(二)MIPS 指令集

计算机的语言&#xff1a;汇编指令集 也就是指令集。本书主要介绍 MIPS 指令集。 汇编指令 算数运算&#xff1a; add a,b,c # abc sub a,b,c # ab-cMIPS 汇编的注释是 # 号。 由于MIPS中寄存器大小32位&#xff0c;是基本访问单位&#xff0c;因此也被称为一个字 word。M…...

【设计模式】模板方法模式(Template Method Pattern)

23种设计模式之模板方法模式&#xff08;Template Method Pattern&#xff09; 基本概念 模板方法模式是一种行为型设计模式&#xff0c;它定义了一个算法骨架&#xff0c;将某些算法步骤的实现延迟到子类中。 这样可以使得算法的框架不被修改&#xff0c;但是具体的实现可以…...

【潮州饶平】联想 IBM x3850 x6 io主板故障 服务器维修

哈喽 最近比较忙也好久没有更新服务器维修案例了&#xff0c;这次分享一例潮州市饶平县某企业工厂一台IBM System x3850 x6服务器亮黄灯告警且无法正常开机的服务器故障问题。潮州饶平ibm服务器维修IO主板故障问题 故障如下图所示&#xff1a; 故障服务器型号&#xff1a;IBM 或…...

【AIGC】 国内版聊天GPT

国内版聊天GPT 引言一、国内平台二、简单体验2.1 提问2.2 角色扮演2.3 总结画图 引言 ChatGPT是OpenAI发开的聊天程序&#xff0c;功能强大&#xff0c;可快速获取信息&#xff0c;节省用户时间和精力&#xff0c;提供个性化的服务。目前国产ChatGPT&#xff0c;比如文心一言&a…...

如何在Vue中进行单元测试?什么是Vue的模块化开发?

1、如何在Vue中进行单元测试&#xff1f; 在Vue中进行单元测试可以提高代码的可维护性和可读性&#xff0c;同时也能够帮助开发者更快地找到代码中的问题和潜在的错误。下面是一些在Vue中进行单元测试的步骤&#xff1a; 安装单元测试工具 首先需要安装一个单元测试工具&…...

Matlab编程示例3:Matlab求二次积分的编程示例

1.在MATLAB中&#xff0c;可以使用符号计算工具箱(Symbolic Math Toolbox)中的int函数来求解二次积分。 2.下面是一个简单的MATLAB程序示例&#xff0c;演示二次函数f (x,y) x^2 y^2&#xff0c;在x∈[0 1]和y∈[0 1]的积分区间上&#xff0c;计算积分结果&#xff1a; syms…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...

【题解-洛谷】P10480 可达性统计

题目&#xff1a;P10480 可达性统计 题目描述 给定一张 N N N 个点 M M M 条边的有向无环图&#xff0c;分别统计从每个点出发能够到达的点的数量。 输入格式 第一行两个整数 N , M N,M N,M&#xff0c;接下来 M M M 行每行两个整数 x , y x,y x,y&#xff0c;表示从 …...

从0开始学习R语言--Day17--Cox回归

Cox回归 在用医疗数据作分析时&#xff0c;最常见的是去预测某类病的患者的死亡率或预测他们的结局。但是我们得到的病人数据&#xff0c;往往会有很多的协变量&#xff0c;即使我们通过计算来减少指标对结果的影响&#xff0c;我们的数据中依然会有很多的协变量&#xff0c;且…...

7种分类数据编码技术详解:从原理到实战

在数据分析和机器学习领域&#xff0c;分类数据&#xff08;Categorical Data&#xff09;的处理是一个基础但至关重要的环节。分类数据指的是由有限数量的离散值组成的数据类型&#xff0c;如性别&#xff08;男/女&#xff09;、颜色&#xff08;红/绿/蓝&#xff09;或产品类…...

Spring AI中使用ChatMemory实现会话记忆功能

文章目录 1、需求2、ChatMemory中消息的存储位置3、实现步骤1、引入依赖2、配置Spring AI3、配置chatmemory4、java层传递conversaionId 4、验证5、完整代码6、参考文档 1、需求 我们知道大型语言模型 &#xff08;LLM&#xff09; 是无状态的&#xff0c;这就意味着他们不会保…...

Redis专题-实战篇一-基于Session和Redis实现登录业务

GitHub项目地址&#xff1a;https://github.com/whltaoin/redisLearningProject_hm-dianping 基于Session实现登录业务功能提交版本码&#xff1a;e34399f 基于Redis实现登录业务提交版本码&#xff1a;60bf740 一、导入黑马点评后端项目 项目架构图 1. 前期阶段2. 后续阶段导…...