pointnet C++推理部署--tensorrt框架
classification

如上图所示,由于直接export出的onnx文件有两个输出节点,不方便处理,所以编写脚本删除不需要的输出节点193:
import onnxonnx_model = onnx.load("cls.onnx")
graph = onnx_model.graphinputs = graph.input
for input in inputs:print('input',input.name)outputs = graph.output
for output in outputs:print('output',output.name)graph.output.remove(outputs[1])
onnx.save(onnx_model, 'cls_modified.onnx')
 
C++推理代码:
#include <iostream>
#include <fstream>
#include <vector>
#include <algorithm>
#include <cuda_runtime.h>
#include <NvInfer.h>
#include <NvInferRuntime.h>
#include <NvOnnxParser.h>const int point_num = 1024;void pc_normalize(std::vector<float>& points)
{float mean_x = 0, mean_y = 0, mean_z = 0;for (size_t i = 0; i < point_num; ++i){mean_x += points[3 * i];mean_y += points[3 * i + 1];mean_z += points[3 * i + 2];}mean_x /= point_num;mean_y /= point_num;mean_z /= point_num;for (size_t i = 0; i < point_num; ++i){points[3 * i] -= mean_x;points[3 * i + 1] -= mean_y;points[3 * i + 2] -= mean_z;}float m = 0;for (size_t i = 0; i < point_num; ++i){if (sqrt(pow(points[3 * i], 2) + pow(points[3 * i + 1], 2) + pow(points[3 * i + 2], 2)) > m)m = sqrt(pow(points[3 * i], 2) + pow(points[3 * i + 1], 2) + pow(points[3 * i + 2], 2));}for (size_t i = 0; i < point_num; ++i){points[3 * i] /= m;points[3 * i + 1] /= m;points[3 * i + 2] /= m;}
}class TRTLogger : public nvinfer1::ILogger 
{
public:virtual void log(Severity severity, nvinfer1::AsciiChar const* msg) noexcept override{if (severity <= Severity::kINFO) printf(msg);}
} logger;std::vector<unsigned char> load_file(const std::string& file) 
{std::ifstream in(file, std::ios::in | std::ios::binary);if (!in.is_open())return {};in.seekg(0, std::ios::end);size_t length = in.tellg();std::vector<uint8_t> data;if (length > 0) {in.seekg(0, std::ios::beg);data.resize(length);in.read((char*)& data[0], length);}in.close();return data;
}void classfier(std::vector<float> & points)
{TRTLogger logger;nvinfer1::ICudaEngine* engine;//#define BUILD_ENGINE#ifdef  BUILD_ENGINEnvinfer1::IBuilder* builder = nvinfer1::createInferBuilder(logger);nvinfer1::IBuilderConfig* config = builder->createBuilderConfig();nvinfer1::INetworkDefinition* network = builder->createNetworkV2(1);nvonnxparser::IParser* parser = nvonnxparser::createParser(*network, logger);if (!parser->parseFromFile("cls_modified.onnx", 1)){printf("Failed to parser onnx\n");return;}int maxBatchSize = 1;config->setMaxWorkspaceSize(1 << 32);engine = builder->buildEngineWithConfig(*network, *config);if (engine == nullptr) {printf("Build engine failed.\n");return;}nvinfer1::IHostMemory* model_data = engine->serialize();FILE* f = fopen("cls.engine", "wb");fwrite(model_data->data(), 1, model_data->size(), f);fclose(f);model_data->destroy();parser->destroy();engine->destroy();network->destroy();config->destroy();builder->destroy();
#endif  auto engine_data = load_file("cls.engine");nvinfer1::IRuntime* runtime = nvinfer1::createInferRuntime(logger);engine = runtime->deserializeCudaEngine(engine_data.data(), engine_data.size());if (engine == nullptr){printf("Deserialize cuda engine failed.\n");runtime->destroy();return;}nvinfer1::IExecutionContext* execution_context = engine->createExecutionContext();cudaStream_t stream = nullptr;cudaStreamCreate(&stream);float* input_data_host = nullptr;const size_t input_numel = 1 * 3 * point_num;cudaMallocHost(&input_data_host, input_numel * sizeof(float));for (size_t i = 0; i < 3; i++){for (size_t j = 0; j < point_num; j++){input_data_host[point_num * i + j] = points[3 * j + i];}}float* input_data_device = nullptr;float output_data_host[10];float* output_data_device = nullptr;cudaMalloc(&input_data_device, input_numel * sizeof(float));cudaMalloc(&output_data_device, sizeof(output_data_host));cudaMemcpyAsync(input_data_device, input_data_host, input_numel * sizeof(float), cudaMemcpyHostToDevice, stream);float* bindings[] = { input_data_device, output_data_device };bool success = execution_context->enqueueV2((void**)bindings, stream, nullptr);cudaMemcpyAsync(output_data_host, output_data_device, sizeof(output_data_host), cudaMemcpyDeviceToHost, stream);cudaStreamSynchronize(stream);int predict_label = std::max_element(output_data_host, output_data_host + 10) - output_data_host;std::cout << "\npredict_label: " << predict_label << std::endl;cudaStreamDestroy(stream);execution_context->destroy();engine->destroy();runtime->destroy();
}int main()
{std::vector<float> points;std::ifstream infile;float x, y, z, nx, ny, nz;char ch;infile.open("bed_0610.txt");for (size_t i = 0; i < point_num; i++){infile >> x >> ch >> y >> ch >> z >> ch >> nx >> ch >> ny >> ch >> nz;points.push_back(x);points.push_back(y);points.push_back(z);}infile.close();pc_normalize(points);classfier(points);return 0;
}
 
其中推理引擎的构建也可以直接使用tensorrt的bin目录下的trtexec.exe。
 LZ也实现了cuda版本的前处理代码,但似乎效率比cpu前处理还低。可能是数据量不够大吧(才10^3数量级),而且目前LZ的cuda水平也只是入门阶段…
#include <iostream>
#include <fstream>
#include <vector>
#include <algorithm>
#include <cuda_runtime.h>
#include <cuda_runtime_api.h>
#include <NvInfer.h>
#include <NvInferRuntime.h>
#include <NvOnnxParser.h>const int point_num = 1024;
const int thread_num = 1024;
const int block_num = 1;__global__ void array_sum(float* data, float* val, int N)
{__shared__ double share_dTemp[thread_num];const int nStep = gridDim.x * blockDim.x;const int tid = blockIdx.x * blockDim.x + threadIdx.x;double dTempSum = 0.0;for (int i = tid; i < N; i += nStep){dTempSum += data[i];}share_dTemp[threadIdx.x] = dTempSum;__syncthreads();for (int i = blockDim.x / 2; i != 0; i /= 2){if (threadIdx.x < i){share_dTemp[threadIdx.x] += share_dTemp[threadIdx.x + i];}__syncthreads();}if (0 == threadIdx.x){atomicAdd(val, share_dTemp[0]);}
}__global__ void array_sub(float* data, float val, int N)
{const int tid = blockIdx.x * blockDim.x + threadIdx.x;const int nStep = blockDim.x * gridDim.x;for (int i = tid; i < N; i += nStep){data[i] = data[i] - val;}
}__global__ void array_L2(float* in, float* out, int N)
{const int tid = blockIdx.x * blockDim.x + threadIdx.x;const int nStep = blockDim.x * gridDim.x;for (int i = tid; i < N; i += nStep){out[i] = sqrt(pow(in[i], 2) + pow(in[i + N], 2) + pow(in[i + 2 * N], 2));}
}__global__ void array_max(float* mem, int numbers) 
{int tid = threadIdx.x;int idof = blockIdx.x * blockDim.x;int idx = tid + idof;extern __shared__ float tep[];if (idx >= numbers) return;tep[tid] = mem[idx];unsigned int bi = 0;for (int s = 1; s < blockDim.x; s = (s << 1)){unsigned int kid = tid << (bi + 1);if ((kid + s) >= blockDim.x || (idof + kid + s) >= numbers) break;tep[kid] = tep[kid] > tep[kid + s] ? tep[kid] : tep[kid + s];++bi;__syncthreads();}if (tid == 0) {mem[blockIdx.x] = tep[0];}
}__global__ void array_div(float* data, float val, int N)
{const int tid = blockIdx.x * blockDim.x + threadIdx.x;const int nStep = blockDim.x * gridDim.x;for (int i = tid; i < N; i += nStep){data[i] = data[i] / val;}
}void pc_normalize_gpu(float* points)
{float *mean_x = NULL,  *mean_y = NULL,  *mean_z = NULL;cudaMalloc((void**)& mean_x, sizeof(float));cudaMalloc((void**)& mean_y, sizeof(float));cudaMalloc((void**)& mean_z, sizeof(float));array_sum << <thread_num, block_num >> > (points + 0 * point_num, mean_x, point_num);array_sum << <thread_num, block_num >> > (points + 1 * point_num, mean_y, point_num);array_sum << <thread_num, block_num >> > (points + 2 * point_num, mean_z, point_num);float mx, my, mz;cudaMemcpy(&mx, mean_x, sizeof(float), cudaMemcpyDeviceToHost);cudaMemcpy(&my, mean_y, sizeof(float), cudaMemcpyDeviceToHost);cudaMemcpy(&mz, mean_z, sizeof(float), cudaMemcpyDeviceToHost);array_sub << <thread_num, block_num >> > (points + 0 * point_num, mx / point_num, point_num);array_sub << <thread_num, block_num >> > (points + 1 * point_num, my / point_num, point_num);array_sub << <thread_num, block_num >> > (points + 2 * point_num, mz / point_num, point_num);//float* pts = (float*)malloc(sizeof(float) * point_num);//cudaMemcpy(pts, points, sizeof(float) * point_num, cudaMemcpyDeviceToHost);//for (size_t i = 0; i < point_num; i++)//{//	std::cout << pts[i] << std::endl;//}float* L2 = NULL;cudaMalloc((void**)& L2, sizeof(float) * point_num);array_L2 << <thread_num, block_num >> > (points, L2, point_num);//float* l2 = (float*)malloc(sizeof(float) * point_num);//cudaMemcpy(l2, L2, sizeof(float) * point_num, cudaMemcpyDeviceToHost);//for (size_t i = 0; i < point_num; i++)//{//	std::cout << l2[i] << std::endl;//}int tmp_num = point_num;int share_size = sizeof(float) * thread_num;int block_num = (tmp_num + thread_num - 1) / thread_num;do {array_max << <block_num, thread_num, share_size >> > (L2, thread_num);tmp_num = block_num;block_num = (tmp_num + thread_num - 1) / thread_num;} while (tmp_num > 1);float max;cudaMemcpy(&max, L2, sizeof(float), cudaMemcpyDeviceToHost);//std::cout << max << std::endl;array_div << <thread_num, block_num >> > (points + 0 * point_num, max, point_num);array_div << <thread_num, block_num >> > (points + 1 * point_num, max, point_num);array_div << <thread_num, block_num >> > (points + 2 * point_num, max, point_num);}class TRTLogger : public nvinfer1::ILogger 
{
public:virtual void log(Severity severity, nvinfer1::AsciiChar const* msg) noexcept override{if (severity <= Severity::kINFO) printf(msg);}
} logger;std::vector<unsigned char> load_file(const std::string& file) 
{std::ifstream in(file, std::ios::in | std::ios::binary);if (!in.is_open())return {};in.seekg(0, std::ios::end);size_t length = in.tellg();std::vector<uint8_t> data;if (length > 0) {in.seekg(0, std::ios::beg);data.resize(length);in.read((char*)& data[0], length);}in.close();return data;
}void classfier(std::vector<float> & points)
{TRTLogger logger;nvinfer1::ICudaEngine* engine;//#define BUILD_ENGINE#ifdef  BUILD_ENGINEnvinfer1::IBuilder* builder = nvinfer1::createInferBuilder(logger);nvinfer1::IBuilderConfig* config = builder->createBuilderConfig();nvinfer1::INetworkDefinition* network = builder->createNetworkV2(1);nvonnxparser::IParser* parser = nvonnxparser::createParser(*network, logger);if (!parser->parseFromFile("cls_modified.onnx", 1)){printf("Failed to parser onnx\n");return;}int maxBatchSize = 1;config->setMaxWorkspaceSize(1 << 32);engine = builder->buildEngineWithConfig(*network, *config);if (engine == nullptr) {printf("Build engine failed.\n");return;}nvinfer1::IHostMemory* model_data = engine->serialize();FILE* f = fopen("cls.engine", "wb");fwrite(model_data->data(), 1, model_data->size(), f);fclose(f);model_data->destroy();parser->destroy();engine->destroy();network->destroy();config->destroy();builder->destroy();
#endif  auto engine_data = load_file("cls.engine");nvinfer1::IRuntime* runtime = nvinfer1::createInferRuntime(logger);engine = runtime->deserializeCudaEngine(engine_data.data(), engine_data.size());if (engine == nullptr){printf("Deserialize cuda engine failed.\n");runtime->destroy();return;}nvinfer1::IExecutionContext* execution_context = engine->createExecutionContext();cudaStream_t stream = nullptr;cudaStreamCreate(&stream);float* input_data_host = nullptr;const size_t input_numel = 1 * 3 * point_num;cudaMallocHost(&input_data_host, input_numel * sizeof(float));for (size_t i = 0; i < 3; i++){for (size_t j = 0; j < point_num; j++){input_data_host[point_num * i + j] = points[3 * j + i];}}float* input_data_device = nullptr;float output_data_host[10];float* output_data_device = nullptr;cudaMalloc(&input_data_device, input_numel * sizeof(float));cudaMalloc(&output_data_device, sizeof(output_data_host));cudaMemcpyAsync(input_data_device, input_data_host, input_numel * sizeof(float), cudaMemcpyHostToDevice, stream);pc_normalize_gpu(input_data_device);float* bindings[] = { input_data_device, output_data_device };bool success = execution_context->enqueueV2((void**)bindings, stream, nullptr);cudaMemcpyAsync(output_data_host, output_data_device, sizeof(output_data_host), cudaMemcpyDeviceToHost, stream);cudaStreamSynchronize(stream);int predict_label = std::max_element(output_data_host, output_data_host + 10) - output_data_host;std::cout << "\npredict_label: " << predict_label << std::endl;cudaStreamDestroy(stream);execution_context->destroy();engine->destroy();runtime->destroy();
}int main()
{std::vector<float> points;std::ifstream infile;float x, y, z, nx, ny, nz;char ch;infile.open("sofa_0020.txt");for (size_t i = 0; i < point_num; i++){infile >> x >> ch >> y >> ch >> z >> ch >> nx >> ch >> ny >> ch >> nz;points.push_back(x);points.push_back(y);points.push_back(z);}infile.close();classfier(points);return 0;
}
相关文章:
pointnet C++推理部署--tensorrt框架
classification 如上图所示,由于直接export出的onnx文件有两个输出节点,不方便处理,所以编写脚本删除不需要的输出节点193: import onnxonnx_model onnx.load("cls.onnx") graph onnx_model.graphinputs graph.inpu…...
34.Netty源码之Netty如何处理网络请求
highlight: arduino-light 通过前面两节源码课程的学习,我们知道 Netty 在服务端启动时会为创建 NioServerSocketChannel,当客户端新连接接入时又会创建 NioSocketChannel,不管是服务端还是客户端 Channel,在创建时都会初始化自己…...
vscode 安装勾选项解释
1、通过code 打开“操作添加到windows资源管理器文件上下文菜单 :把这个两个勾选上,可以对文件使用鼠标右键,选择VSCode 打开。 2、将code注册为受支持的文件类型的编辑器:不建议勾选,这样会默认使用VSCode打开支持的相…...
Spring 6.0官方文档示例(24): replace-method的用法
一、原始bean定义 package cn.edu.tju.study.service.anno.domain;public class MyValueCalculator {public String computeValue(String input) {return "you inputted: " input;}// some other methods... }二、replace bean定义 package cn.edu.tju.study.serv…...
自然语言处理从入门到应用——LangChain:记忆(Memory)-[聊天消息记录]
分类目录:《自然语言处理从入门到应用》总目录 Cassandra聊天消息记录 Cassandra是一种分布式数据库,非常适合存储大量数据,是存储聊天消息历史的良好选择,因为它易于扩展,能够处理大量写入操作。 # List of contact…...
Python web实战之细说 Django 的单元测试
关键词: Python Web 开发、Django、单元测试、测试驱动开发、TDD、测试框架、持续集成、自动化测试 大家好,今天,我将带领大家进入 Python Web 开发的新世界,深入探讨 Django 的单元测试。通过本文的实战案例和详细讲解ÿ…...
pytorch 42 C#使用onnxruntime部署内置nms的yolov8模型
在进行目标检测部署时,通常需要自行编码实现对模型预测结果的解码及与预测结果的nms操作。所幸现在的各种部署框架对算子的支持更为灵活,可以在模型内实现预测结果的解码,但仍然需要自行编码实现对预测结果的nms操作。其实在onnx opset===11版本以后,其已支持将nms操作嵌入…...
【Lua】(一)VSCode 搭建 Lua 开发环境
前言 最近在找工作,基本所有的岗位都会问到 Lua(甚至拼 UI 的都要求会 Lua),咱能怎么办呢,咱也只能学啊…… 工欲善其事,必先利其器。第一步,先来把环境配置好吧! 当前适用版本&a…...
react-vite-antd环境下新建项目
vite 创建一个react项目 1. 安装vite并创建一个react项目1. 我使用的 yarn安装,基本配置项目名字, 框架react ,js2. cd vite-react进入项目目录安装node包并启动项目 2. 安装引入Ant Design引入依赖(我用的yarn,没有安装的也可以使…...
KeilMDk软仿真设置_STM32F03C8
1、KeilMDK软仿真的价值 (1)在没有硬件的情况下进行程序的编写调试。 (2)避免频繁的下载程序,延长单片机Flash寿命。 2、软仿真配置。 (1)打开Keil工程。 (2)点击“Options for Target ***”,如下图所示。 (3)点击“Debug”。 (4)进行如下配置。 U…...
mysql的隐式连接和显式连接的区别
隐式连接(Implicit Join)和显式连接(Explicit Join)是 SQL 查询中用于联结多个表的两种不同语法方式。它们的区别主要体现在语法的书写风格和可读性上。 隐式连接: 隐式连接使用逗号 , 将多个表名放在 FROM 子句中&am…...
vue-element-admin新增view后点击侧边栏加载慢问题
按照官网文档新增view 新增之后点击显示一直在加载中 解决方案:删除script中这段代码...
论文《LoRA: Low-Rank Adaptation of Large Language Models》阅读
论文《LoRA: Low-Rank Adaptation of Large Language Models》阅读 BackgroundIntroducitonProblem StatementMethodology Δ W \Delta W ΔW 的选择 W W W的选择 总结 今天带来的是由微软Edward Hu等人完成并发表在ICLR 2022上的论文《LoRA: Low-Rank Adaptation of Large Lan…...
MySQL数据类型篇
数值类型 类型有符号(SIGNED)取值范围无符号(UNSIGNED)取值范围大小描述TINYINT(-128,127)(0,255)1byte小整数值SMALLINT(-32768,32767)(0,65535)2bytes大整数值INT/INTEGER(-2147483648,2147483647)(0,429…...
Eureka注册中心
全部流程 注册服务中心 添加maven依赖 <!--引用注册中心--> <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-netflix-eureka-server</artifactId> </dependency> 配置Eureka 因为自…...
代码随想录算法训练营第53天|动态规划part14
8.19周六 1143.最长公共子序列 1035.不相交的线 53. 最大子序和 动态规划 详细布置 1143.最长公共子序列 题目:两个字符串,问最长的公共子序列多长(不连续) 题解: 1、dp[i][j]:长度为[0, i - 1]的字…...
houdini xyzdist primuv 实现按路径走
2. meause distance v 0; add popforce...
Asrock-Z690-PG-Reptide i5-13600kf电脑 Hackintosh 黑苹果引导文件
硬件配置(需要下载请百度搜索:黑果魏叔) 硬件型号驱动情况主板 Asrock Z690 PG Reptide 处理器i5-13600kf RaptorLake (Undervolted)已驱动内存2x16Gb DDR4 3600 ADATA XPG已驱动硬盘1Tb Netac NV7000 NVME M2 (PCI-e 4.0)已驱动显卡Radeon …...
linux 搭建 nexus maven私服
目录 环境: 下载 访问百度网盘链接 官网下载 部署 : 进入目录,创建文件夹,进入文件夹 将安装包放入nexus文件夹,并解压编辑 启动 nexus,并查看状态.编辑 更改 nexus 端口为7020,并重新启动,访问虚拟机7020…...
MySQL中按月统计并逐月累加统计值的几种写法
有时候,我们可能有这样的场景,需要将销量按月统计,并且按月逐月累加。写惯了GROUP BY,按月统计倒是小case,但是逐月累加实现起来,要稍微麻烦一点。下面就整理几种写法,以备不时之需。 本月第一天 -- 本月第一天 SELE…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
2.Vue编写一个app
1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...
【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
