论文《LoRA: Low-Rank Adaptation of Large Language Models》阅读
论文《LoRA: Low-Rank Adaptation of Large Language Models》阅读
- Background
- Introduciton
- Problem Statement
- Methodology
- 总结
今天带来的是由微软Edward Hu等人完成并发表在ICLR 2022上的论文《LoRA: Low-Rank Adaptation of Large Language Models》,论文提出了大模型 tuning 框架 LoRA (Low-Rank Adaptation)。
论文地址:https://openreview.net/pdf?id=nZeVKeeFYf9
附录下载地址:https://openreview.net/attachment?id=nZeVKeeFYf9&name=supplementary_material
代码地址:https://github.com/microsoft/LoRA
Background
一些术语介绍:
· Intrinsic Dimension(本征维度):An objective function’s intrinsic dimensionality describes the minimum dimension needed to solve the optimization problem it defines to some precision level. 是指在pre-trained LLM中,对于下游的tuning工作,实际上不需要对模型所有参数都进行更新,在保证某种精度(如90%)的要求下,可以只更新一部分就可以了(可称为 d 90 d_{90} d90)。
few-shot learning:少样本学习。借助于少样本学习,大模型在特定下游任务的训练过程中,只需要少数的特定任务数据就可以发挥不错的性能。
Prompt Engineering:提示工程。这是 LLM 在 NLP 应用中的特有应用,类似于特征工程,是一种需要专家背景知识,通过组织input的格式,风格等内容,使得输入内容对LLM能够具备更好的促进作用。
Adaptation:适应。也就是大模型对特定下游任务的tuning,使其能够在下游任务中性能更好。
Introduciton
本文提出的主要出发点在于 大模型 的训练模式,即先通过对 大量的 task-independent 语料的预训练,然后再在特定任务上进行精调 fine-tuning,使得模型能够在特定的下游任务中展现较好的表现。
这里就出现一个问题,大模型无论是在存储还是计算上,都是很大的,需要很大的算力和存储。Fine-tuning所有参数就会很费时费力。举例来说,GPT-3 175B总共包含175 billion个参数,也就是1750亿个,fine-tuning所有层,所有Transformer中的Q K V 和 output 矩阵加上 bias,可想而知是一个很大的开销。如何解决这个问题构成本文的 Motivation。
当然已经有诸多此类问题的解决方案。例如,Adapter Layer,也就是在Transformer中插入了两层Adapter Layer 来适应下游任务,只更新Adapter Layer 中的参数,原来的Transformer中的参数 不进行更新。这类模型的问题在于,Adapter Layer 和原来的大模型参数是从输入到输出上下夹在一起的(类似于汉堡),参数计算时必须从输入到输出一层一层进行。那么模型在推理的时候,就必然涉及到等上一层计算完才可以计算下一层,那么就带来了模型的延迟,影响模型体验。
作者提出了低秩矩阵乘法作为任意矩阵 W W W的 特定增量 Δ W \Delta W ΔW,通过只更新 Δ W \Delta W ΔW 的方式减小模型开销的同时,保住模型性能。
是的,模型就是这么“简单”,但是一方面模型的切入点非常犀利;另一方面模型性能不错且带来了巨大的 tuning 节省,让贫穷的学生党探索大模型时能够更自如一些;同时,本文的实验部分也非常充分(附录中),在不同benchmark中的表现都能够佐证LoRA模型的有效性。

Problem Statement
首先是问题形式化,对于fine-tuning,就是把预训练完成的所有参数checkpoint进行存储dump,在精调阶段,将所有参数初始化为dump出来的value,以此作为参数更新的起始点,完成模型优化。表示如下:
max Φ ∑ ( x , y ) ∈ Z ∑ t = 1 ∣ y ∣ log ( P Φ ( y t ∣ x , y < t ) ) (1) \max _{\Phi} \sum_{(x, y) \in \mathcal{Z}} \sum_{t=1}^{|y|} \log \left(P_{\Phi}\left(y_{t} \mid x, y_{<t}\right)\right) \tag{1} Φmax(x,y)∈Z∑t=1∑∣y∣log(PΦ(yt∣x,y<t))(1)
如上所示,通过对下游任务数据集 Z \mathcal{Z} Z 进行模型所有参数 Φ \Phi Φ 的更新。如果 Φ {\Phi} Φ 很大,那么fine-tuning 就会很麻烦。
对此,作者提出了只更新 task-specific 的 新引入的 少量的参数 Δ Φ = Δ Φ ( Θ ) \Delta \Phi = \Delta \Phi(\Theta) ΔΦ=ΔΦ(Θ),完成模型的tuning。这里 Θ \Theta Θ 是新参数,而且维度相比较于原LLM模型很小( ∣ Θ ∣ ≪ ∣ Φ 0 ∣ |\Theta| \ll |\Phi_{0}| ∣Θ∣≪∣Φ0∣。作者指出,LoRA能够将需要更新的参数数量缩小到万分之一的地步。
max Θ ∑ ( x , y ) ∈ Z ∑ t = 1 ∣ y ∣ log ( p Φ 0 + Δ Φ ( Θ ) ( y t ∣ x , y < t ) ) (2) \max _{\Theta} \sum_{(x, y) \in \mathcal{Z}} \sum_{t=1}^{|y|} \log \left(p_{\Phi_{0}+\Delta \Phi(\Theta)}\left(y_{t} \mid x, y_{<t}\right)\right) \tag{2} Θmax(x,y)∈Z∑t=1∑∣y∣log(pΦ0+ΔΦ(Θ)(yt∣x,y<t))(2)
Methodology
LoRA的具体设计实际上用两句话可以完成概括,(1)引入低秩矩阵进行 Δ W \Delta W ΔW 的计算;(2)选择哪些矩阵进行引入。
Δ W \Delta W ΔW 的选择
对于 Δ W \Delta W ΔW 的计算,如下所示:
h = W 0 x + Δ W x = W 0 x + B A x (3) h=W_{0} x+\Delta W x=W_{0} x+B A x \tag{3} h=W0x+ΔWx=W0x+BAx(3)
即,针对Transformer中的矩阵,加入一个 B ⋅ A B \cdot A B⋅A 的操作,其中, B B B 和 A A A 共享的那个维度是 r r r,远小于 输入维度( x x x 的维度)和 输出维度 ( h h h 的维度)。
W W W的选择
Transformer中的几个矩阵可以分为四类,这里分别表示为Q/K/V/O,分别对应到query/key/value/output。作者在附录中加入了对矩阵的选择(所有可训练参数总数18M, 18 M / 175 B ≈ 1 / 10 K 18M/175B \approx 1/10K 18M/175B≈1/10K),可以看到对QKVO所有矩阵都进行更新,性能最佳。但是在文中,作者普遍使用了只更新QV的方式,并说QV表现更好,这里不太明白。

总结
本文simple but effective,值得一看!
相关文章:
论文《LoRA: Low-Rank Adaptation of Large Language Models》阅读
论文《LoRA: Low-Rank Adaptation of Large Language Models》阅读 BackgroundIntroducitonProblem StatementMethodology Δ W \Delta W ΔW 的选择 W W W的选择 总结 今天带来的是由微软Edward Hu等人完成并发表在ICLR 2022上的论文《LoRA: Low-Rank Adaptation of Large Lan…...
MySQL数据类型篇
数值类型 类型有符号(SIGNED)取值范围无符号(UNSIGNED)取值范围大小描述TINYINT(-128,127)(0,255)1byte小整数值SMALLINT(-32768,32767)(0,65535)2bytes大整数值INT/INTEGER(-2147483648,2147483647)(0,429…...
Eureka注册中心
全部流程 注册服务中心 添加maven依赖 <!--引用注册中心--> <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-netflix-eureka-server</artifactId> </dependency> 配置Eureka 因为自…...
代码随想录算法训练营第53天|动态规划part14
8.19周六 1143.最长公共子序列 1035.不相交的线 53. 最大子序和 动态规划 详细布置 1143.最长公共子序列 题目:两个字符串,问最长的公共子序列多长(不连续) 题解: 1、dp[i][j]:长度为[0, i - 1]的字…...
houdini xyzdist primuv 实现按路径走
2. meause distance v 0; add popforce...
Asrock-Z690-PG-Reptide i5-13600kf电脑 Hackintosh 黑苹果引导文件
硬件配置(需要下载请百度搜索:黑果魏叔) 硬件型号驱动情况主板 Asrock Z690 PG Reptide 处理器i5-13600kf RaptorLake (Undervolted)已驱动内存2x16Gb DDR4 3600 ADATA XPG已驱动硬盘1Tb Netac NV7000 NVME M2 (PCI-e 4.0)已驱动显卡Radeon …...
linux 搭建 nexus maven私服
目录 环境: 下载 访问百度网盘链接 官网下载 部署 : 进入目录,创建文件夹,进入文件夹 将安装包放入nexus文件夹,并解压编辑 启动 nexus,并查看状态.编辑 更改 nexus 端口为7020,并重新启动,访问虚拟机7020…...
MySQL中按月统计并逐月累加统计值的几种写法
有时候,我们可能有这样的场景,需要将销量按月统计,并且按月逐月累加。写惯了GROUP BY,按月统计倒是小case,但是逐月累加实现起来,要稍微麻烦一点。下面就整理几种写法,以备不时之需。 本月第一天 -- 本月第一天 SELE…...
音视频 FFmpeg音视频处理流程
ffmpeg -i test_1920x1080.mp4 -acodec copy -vcodec libx264 -s 1280x720 test_1280x720.flv推荐一个零声学院项目课,个人觉得老师讲得不错,分享给大家: 零声白金学习卡(含基础架构/高性能存储/golang云原生/音视频/Linux内核&am…...
Linux网络编程:多进程 多线程_并发服务器
文章目录: 一:wrap常用函数封装 wrap.h wrap.c server.c client.c 二:多进程process并发服务器 实现思路 server.c服务器 client.c客户端 三:多线程thread并发服务器 实现思路 server.c服务器 client.c客户端 一&am…...
解决:(error) ERR unknown command shutdow,with args beginning with
目录 一、遇到问题 二、出现问题的原因 三、解决办法 一、遇到问题 要解决连接redis闪退的问题,按照许多的方式去进行都没有成功,在尝试使用了以下的命名去尝试时候,发现了这个问题。 二、出现问题的原因 这是一个粗心大意导致的错误&am…...
《TCP IP网络编程》第十八章
第 18 章 多线程服务器端的实现 18.1 理解线程的概念 线程背景: 第 10 章介绍了多进程服务端的实现方法。多进程模型与 select 和 epoll 相比的确有自身的优点,但同时也有问题。如前所述,创建(复制)进程的工作本身会…...
TCP编程流程
目录 1、主机字节序列和网络字节序列 2、套接字地址结构 3、IP地址转换函数 4、TCP协议编程: (1)服务器端: (2)客户端: 1、主机字节序列和网络字节序列 主机字节序列分为大端字节序和小端字节序 大端…...
CSDN编程题-每日一练(2023-08-19)
CSDN编程题-每日一练(2023-08-19) 一、题目名称:风险投资二、题目名称:幼稚班作业三、题目名称:韩信点兵一、题目名称:风险投资 时间限制:1000ms内存限制:256M 题目描述: 风险投资是一种感性和理性并存的投资方式,风险投资人一般会对请公允的第三方评估公司对投资对象…...
03_缓存双写一致性
03——缓存双写一致性 一、缓存双写一致性 如果redis中有数据,需要和数据库中的值相同如果redis中无数据,数据库中的值要是最新值,且准备回写redis 缓存按照操作来分,可以分为两种: 只读缓存 读写缓存 同步直写操作…...
机器学习之数据集
目录 1、简介 2、可用数据集 3、scikit-learn数据集API 3.1、小数据集 3.2、大数据集 4、数据集使用 ⭐所属专栏:人工智能 文中提到的代码如有需要可以私信我发给你😊 1、简介 当谈论数据集时,通常是指在机器学习和数据分析中使用的一组…...
PyTorch Geometric基本教程
PyG官方文档 # Install torch geometric !pip install -q torch-scatter -f https://pytorch-geometric.com/whl/torch-1.10.2cu102.html !pip install -q torch-sparse -f https://pytorch-geometric.com/whl/torch-1.10.2cu102.html !pip install -q torch-geometricimport t…...
MAC 命令行启动tomcat的详细介绍
MAC 命令行启动tomcat MAC 命令行启动tomcat的详细介绍 一、修改授权 进入tomcat的bin目录,修改授权 1 2 3 ➜ bin pwd /Users/yp/Documents/workspace/apache-tomcat-7.0.68/bin ➜ bin sudo chmod 755 *.sh sudo为系统超级管理员权限.chmod 改变一个或多个文件的存取模…...
idea2023 springboot2.7.5+mybatisplus3.5.2+jsp 初学单表增删改查
创建项目 修改pom.xml 为2.7.5 引入mybatisplus 2.1 修改pom.xml <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.5.2</version></dependency><!--mysq…...
轻松搭建书店小程序
在现今数字化时代,拥有一个自己的小程序成为了许多企业和个人的追求。而对于书店经营者来说,拥有一个能够提供在线购书服务的小程序将有助于吸引更多的读者,并提升销售额。本文将为您介绍如何轻松搭建书店小程序,并将其成功上线。…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
OD 算法题 B卷【正整数到Excel编号之间的转换】
文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的:a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...
