回归预测 | MATLAB实现SA-SVM模拟退火算法优化支持向量机多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现SA-SVM模拟退火算法优化支持向量机多输入单输出回归预测(多指标,多图)
目录
- 回归预测 | MATLAB实现SA-SVM模拟退火算法优化支持向量机多输入单输出回归预测(多指标,多图)
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览



基本介绍
回归预测 | MATLAB实现SA-SVM模拟退火算法优化支持向量机多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。
程序设计
- 完整源码和数据获取方式:私信回复MATLAB实现SA-SVM模拟退火算法优化支持向量机多输入单输出回归预测(多指标,多图)。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据
res = xlsread('data.xlsx');%% 划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%% 均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%% 相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
相关文章:
回归预测 | MATLAB实现SA-SVM模拟退火算法优化支持向量机多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现SA-SVM模拟退火算法优化支持向量机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现SA-SVM模拟退火算法优化支持向量机多输入单输出回归预测(多指标,多图)效果一览基本…...
Spring事务和事务传播机制(1)
前言🍭 ❤️❤️❤️SSM专栏更新中,各位大佬觉得写得不错,支持一下,感谢了!❤️❤️❤️ Spring Spring MVC MyBatis_冷兮雪的博客-CSDN博客 在Spring框架中,事务管理是一种用于维护数据库操作的一致性和…...
如何快速在vscode中实现不同python文件的对比查看
总体而言:两种方式。一种是直接点击vscode右上角的图标(见下图)。 另一种方式就是使用快捷键啦“**Ctrl**”,用的时候选中想要对比的python文件,然后快捷键就可以达到下图效果了: 建议大家直接使用第二种…...
网络安全---Ring3下动态链接库.so函数劫持
一、动态链接库劫持原理 1.1、原理 Unix操作系统中,程序运行时会按照一定的规则顺序去查找依赖的动态链接库,当查找到指定的so文件时,动态链接器(/lib/ld-linux.so.X)会将程序所依赖的共享对象进行装载和初始化,而为什么可以使用…...
leetcode283. 移动零
难度:简单题 题目 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。 请注意 ,必须在不复制数组的情况下原地对数组进行操作。 思路: 一开始想,从前往后遍历&am…...
GuLi商城-前端基础Vue-生命周期和钩子函数
下图展示了实例的生命周期。你不需要立马弄明白所有的东西,不过随着你的不断学习和使用,它 的参考价值会越来越高。 VUE 的生命周期指的是组件在创建、运行和销毁过程中所经历的一系列事件,通过这些事件可以 让开发者在不同阶段进行相应的…...
输入输出+暴力模拟入门:魔法之树、染色の树、矩阵、字母加密、玫瑰鸭
秋招实习刷题网站推荐:codefun2000.com,还有题解博客:blog.codefun2000.com/。以下内容都是来自塔子哥的~ 输入输出 2023.04.15-春招-第三题-魔法之树 //#include<bits/stdc.h> #include<vector> #include<iostream>usin…...
Kubernetes的演变:从etcd到分布式SQL的过渡
DevRel领域专家Denis Magda表示,他偶然发现了一篇解释如何用PostgreSQL无缝替换etcd的文章。该文章指出,Kine项目作为外部etcd端点,可以将Kubernetes etcd请求转换为底层关系数据库的SQL查询。 受到这种方法的启发,Magda决定进一步…...
29、简单通过git把项目远程提交到gitee
简单通过git把项目远程提交到gitee 1、在gitee上创建一个仓库 2、在要提交的项目文件夹打开git 输入 git init 初始化git 然后设置下用户名和邮箱 git config --global user.name “username” git config --global user.email “yourEmail” 因为我是要把文件简单提交到…...
元宇宙之应用(04)沉浸式游戏
在数字科技迅猛发展的今天,元宇宙的概念正逐渐从科幻走向现实,重新定义了人们与虚拟世界的交互方式。在这一概念的引领下,"沉浸式游戏" 蓬勃发展,为游戏体验带来了前所未有的深度和广度。那么,为什么沉浸式游…...
浙大数据结构第八周之08-图7 公路村村通
题目详情: 现有村落间道路的统计数据表中,列出了有可能建设成标准公路的若干条道路的成本,求使每个村落都有公路连通所需要的最低成本。 输入格式: 输入数据包括城镇数目正整数N(≤1000)和候选道路数目M(…...
SpringBoot 解决跨域问题
同源策略(CORS):浏览器在解析发送的请求时,要求浏览器的路径与发送的请求的路径必须满足三个要求,即请求的协议、域名、端口号都相同,满足同源策略,才可以访问服务器,否则࿰…...
2023 年牛客多校第十场题解
C Multiplication 题意:定义 k k k-shift 数是满足 k x y ‾ y x ‾ k\overline{xy}\overline{yx} kxyyx 的数字。给定 k k k,求最大不超过 n n n 的 k k k-shift 数。 1 ≤ n ≤ 1 0 100 1 \le n \le 10^{100} 1≤n≤10100, 2 ≤…...
韦东山老师 RTOS 入门课程(一)RTOS 介绍,熟悉裸机的汇编逻辑
韦东山老师 RTOS 入门课程 课程链接:韦东山直播公开课:RTOS实战项目之实现多任务系统 第1节:裸机程序框架和缺陷_哔哩哔哩_bilibili RTOS 介绍 裸机:固定顺序执行。 中断:可以一直专心做循环里的事情,直…...
WebRTC | SDP详解
目录 一、SDP标准规范 1. SDP结构 2. SDP内容及type类型 二、WebRTC中的SDP结构 1. 媒体信息描述 (1)SDP中媒体信息格式 i. “artpmap”属性 ii. “afmtp”属性 (2)SSRC与CNAME (3)举个例子 &…...
Springboot 实践(9)springboot集成Oauth2.0授权包,5个接口文件配置详解
前文讲解实现了spring boot集成Oauth2.0,实现了授权服务器和资源服务器的搭建,并通过浏览器和postman测试,获取到了授权码,用携带授权码的URL能够争取范文到资源。 本文详细讲解spring boot集成Oauth2.0的几个重要文件接口&#…...
最新AI系统ChatGPT程序源码/支持GPT4/自定义训练知识库/GPT联网/支持ai绘画(Midjourney)+Dall-E2绘画/支持MJ以图生图
一、前言 SparkAi系统是基于国外很火的ChatGPT进行开发的Ai智能问答系统。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。 那么如何搭建部署AI创作ChatGPT?小编这里写一个详细图文教程吧!…...
【高频面试题】 消息中间件
文章目录 1、RabbitMQ1.1 RabbitMQ-如何保证消息不丢失1.2 RabbitMQ消息的重复消费问题如何解决的1.3 RabbitMQ中死信交换机 ? (RabbitMQ延迟队列有了解过嘛)1.4 RabbitMQ如果有100万消息堆积在MQ , 如何解决(消息堆积怎么解决)1.5 RabbitMQ的高可用机制有了解过嘛 2、Kafka2.…...
物联网智慧安防实训综合实训基地建设方案
一、系统概述 物联网智慧安防实训综合实训基地是一个为学生提供综合实践、培养技能的场所,专注于物联网技术与智慧安防应用的培训和实训。通过物联网智慧安防实训综合实训基地的建设和运营,学生可以在真实的环境中进行实践训练,提高其物联网技…...
openGauss学习笔记-44 openGauss 高级数据管理-存储过程
文章目录 openGauss学习笔记-44 openGauss 高级数据管理-存储过程44.1 语法格式44.2 参数说明44.3 示例 openGauss学习笔记-44 openGauss 高级数据管理-存储过程 存储过程是能够完成特定功能的SQL语句集。用户可以进行反复调用,从而减少SQL语句的重复编写数量&…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
CocosCreator 之 JavaScript/TypeScript和Java的相互交互
引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
MySQL 部分重点知识篇
一、数据库对象 1. 主键 定义 :主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 :确保数据的完整性,便于数据的查询和管理。 示例 :在学生信息表中,学号可以作为主键ÿ…...
