回归预测 | MATLAB实现SA-SVM模拟退火算法优化支持向量机多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现SA-SVM模拟退火算法优化支持向量机多输入单输出回归预测(多指标,多图)
目录
- 回归预测 | MATLAB实现SA-SVM模拟退火算法优化支持向量机多输入单输出回归预测(多指标,多图)
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览



基本介绍
回归预测 | MATLAB实现SA-SVM模拟退火算法优化支持向量机多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。
程序设计
- 完整源码和数据获取方式:私信回复MATLAB实现SA-SVM模拟退火算法优化支持向量机多输入单输出回归预测(多指标,多图)。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据
res = xlsread('data.xlsx');%% 划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%% 均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%% 相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
相关文章:
回归预测 | MATLAB实现SA-SVM模拟退火算法优化支持向量机多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现SA-SVM模拟退火算法优化支持向量机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现SA-SVM模拟退火算法优化支持向量机多输入单输出回归预测(多指标,多图)效果一览基本…...
Spring事务和事务传播机制(1)
前言🍭 ❤️❤️❤️SSM专栏更新中,各位大佬觉得写得不错,支持一下,感谢了!❤️❤️❤️ Spring Spring MVC MyBatis_冷兮雪的博客-CSDN博客 在Spring框架中,事务管理是一种用于维护数据库操作的一致性和…...
如何快速在vscode中实现不同python文件的对比查看
总体而言:两种方式。一种是直接点击vscode右上角的图标(见下图)。 另一种方式就是使用快捷键啦“**Ctrl**”,用的时候选中想要对比的python文件,然后快捷键就可以达到下图效果了: 建议大家直接使用第二种…...
网络安全---Ring3下动态链接库.so函数劫持
一、动态链接库劫持原理 1.1、原理 Unix操作系统中,程序运行时会按照一定的规则顺序去查找依赖的动态链接库,当查找到指定的so文件时,动态链接器(/lib/ld-linux.so.X)会将程序所依赖的共享对象进行装载和初始化,而为什么可以使用…...
leetcode283. 移动零
难度:简单题 题目 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。 请注意 ,必须在不复制数组的情况下原地对数组进行操作。 思路: 一开始想,从前往后遍历&am…...
GuLi商城-前端基础Vue-生命周期和钩子函数
下图展示了实例的生命周期。你不需要立马弄明白所有的东西,不过随着你的不断学习和使用,它 的参考价值会越来越高。 VUE 的生命周期指的是组件在创建、运行和销毁过程中所经历的一系列事件,通过这些事件可以 让开发者在不同阶段进行相应的…...
输入输出+暴力模拟入门:魔法之树、染色の树、矩阵、字母加密、玫瑰鸭
秋招实习刷题网站推荐:codefun2000.com,还有题解博客:blog.codefun2000.com/。以下内容都是来自塔子哥的~ 输入输出 2023.04.15-春招-第三题-魔法之树 //#include<bits/stdc.h> #include<vector> #include<iostream>usin…...
Kubernetes的演变:从etcd到分布式SQL的过渡
DevRel领域专家Denis Magda表示,他偶然发现了一篇解释如何用PostgreSQL无缝替换etcd的文章。该文章指出,Kine项目作为外部etcd端点,可以将Kubernetes etcd请求转换为底层关系数据库的SQL查询。 受到这种方法的启发,Magda决定进一步…...
29、简单通过git把项目远程提交到gitee
简单通过git把项目远程提交到gitee 1、在gitee上创建一个仓库 2、在要提交的项目文件夹打开git 输入 git init 初始化git 然后设置下用户名和邮箱 git config --global user.name “username” git config --global user.email “yourEmail” 因为我是要把文件简单提交到…...
元宇宙之应用(04)沉浸式游戏
在数字科技迅猛发展的今天,元宇宙的概念正逐渐从科幻走向现实,重新定义了人们与虚拟世界的交互方式。在这一概念的引领下,"沉浸式游戏" 蓬勃发展,为游戏体验带来了前所未有的深度和广度。那么,为什么沉浸式游…...
浙大数据结构第八周之08-图7 公路村村通
题目详情: 现有村落间道路的统计数据表中,列出了有可能建设成标准公路的若干条道路的成本,求使每个村落都有公路连通所需要的最低成本。 输入格式: 输入数据包括城镇数目正整数N(≤1000)和候选道路数目M(…...
SpringBoot 解决跨域问题
同源策略(CORS):浏览器在解析发送的请求时,要求浏览器的路径与发送的请求的路径必须满足三个要求,即请求的协议、域名、端口号都相同,满足同源策略,才可以访问服务器,否则࿰…...
2023 年牛客多校第十场题解
C Multiplication 题意:定义 k k k-shift 数是满足 k x y ‾ y x ‾ k\overline{xy}\overline{yx} kxyyx 的数字。给定 k k k,求最大不超过 n n n 的 k k k-shift 数。 1 ≤ n ≤ 1 0 100 1 \le n \le 10^{100} 1≤n≤10100, 2 ≤…...
韦东山老师 RTOS 入门课程(一)RTOS 介绍,熟悉裸机的汇编逻辑
韦东山老师 RTOS 入门课程 课程链接:韦东山直播公开课:RTOS实战项目之实现多任务系统 第1节:裸机程序框架和缺陷_哔哩哔哩_bilibili RTOS 介绍 裸机:固定顺序执行。 中断:可以一直专心做循环里的事情,直…...
WebRTC | SDP详解
目录 一、SDP标准规范 1. SDP结构 2. SDP内容及type类型 二、WebRTC中的SDP结构 1. 媒体信息描述 (1)SDP中媒体信息格式 i. “artpmap”属性 ii. “afmtp”属性 (2)SSRC与CNAME (3)举个例子 &…...
Springboot 实践(9)springboot集成Oauth2.0授权包,5个接口文件配置详解
前文讲解实现了spring boot集成Oauth2.0,实现了授权服务器和资源服务器的搭建,并通过浏览器和postman测试,获取到了授权码,用携带授权码的URL能够争取范文到资源。 本文详细讲解spring boot集成Oauth2.0的几个重要文件接口&#…...
最新AI系统ChatGPT程序源码/支持GPT4/自定义训练知识库/GPT联网/支持ai绘画(Midjourney)+Dall-E2绘画/支持MJ以图生图
一、前言 SparkAi系统是基于国外很火的ChatGPT进行开发的Ai智能问答系统。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。 那么如何搭建部署AI创作ChatGPT?小编这里写一个详细图文教程吧!…...
【高频面试题】 消息中间件
文章目录 1、RabbitMQ1.1 RabbitMQ-如何保证消息不丢失1.2 RabbitMQ消息的重复消费问题如何解决的1.3 RabbitMQ中死信交换机 ? (RabbitMQ延迟队列有了解过嘛)1.4 RabbitMQ如果有100万消息堆积在MQ , 如何解决(消息堆积怎么解决)1.5 RabbitMQ的高可用机制有了解过嘛 2、Kafka2.…...
物联网智慧安防实训综合实训基地建设方案
一、系统概述 物联网智慧安防实训综合实训基地是一个为学生提供综合实践、培养技能的场所,专注于物联网技术与智慧安防应用的培训和实训。通过物联网智慧安防实训综合实训基地的建设和运营,学生可以在真实的环境中进行实践训练,提高其物联网技…...
openGauss学习笔记-44 openGauss 高级数据管理-存储过程
文章目录 openGauss学习笔记-44 openGauss 高级数据管理-存储过程44.1 语法格式44.2 参数说明44.3 示例 openGauss学习笔记-44 openGauss 高级数据管理-存储过程 存储过程是能够完成特定功能的SQL语句集。用户可以进行反复调用,从而减少SQL语句的重复编写数量&…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...
(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...
