当前位置: 首页 > news >正文

数据在内存中的存储(deeper)

数据在内存中的存储(deeper)

  • 一.数据类型的详细介绍
  • 二.整形在内存中的存储
  • 三.浮点型在内存中的存储

一.数据类型的详细介绍

类型的意义:

  1. 使用这个类型开辟内存空间的大小(大小决定了使用范围)
  2. 如何看待内存空间的视角

(1)整形

char
unsigned char
signed char
short
unsigned short [int]
signed short [int]
int
unsigned int
signed int
long
unsigned long [int]
signed long [int]

(2)浮点型

float
double

(3)构造类型

> 数组类型
> 结构体类型 struct
> 枚举类型 enum
> 联合类型 union

(4)指针类型

int *pi;
char *pc;
float* pf;
void* pv;

(5)空类型

void 表示空类型(无类型)
通常应用于函数的返回类型、函数的参数、指针类型

二.整形在内存中的存储

(1)原码.反码.补码

三种表示方法均有符号位和数值位两部分,符号位都是用0表示‘正’,用1表示‘负’,数值位正数的原反补都相同,负整数的原反补各不相同
原码:直接将数值按照正负数的形式翻译成二进制就可以得到原码
反码:将原码的符号位不变,其他位按位取反就可以得到反码
补码:反码+1就得到补码

对于整形来说:数据存放内存中其实存放的是补码
为什么呢?
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统
一处理;同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路
我们看看在内存中的存储:
在这里插入图片描述
可以看到对于a和b分别存储的是补码,但是我们发现顺序有点不对劲,下面来解释一下原因
(2)大小端介绍

大端:是指数据的低位保存在内存的高地址,而数据的高位保存在内存的低地址中
小端:是指数据的低位保存在内存的低地址,而数据的高位保存在内存的高地址中

下面来设计一个小程序来判断当前机器的字节序吧!

#include <stdio.h>
int check_sys()
{int i = 1;return (*(char *)&i);
}
int main()
{int ret = check_sys();if(ret == 1){printf("小端\n");}else{printf("大端\n");}return 0;
}

三.浮点型在内存中的存储

一个浮点数存储的例子来引入话题吧:

int main()
{int n = 9;float *pFloat = (float *)&n;printf("n的值为:%d\n",n);printf("*pFloat的值为:%f\n",*pFloat);*pFloat = 9.0;printf("num的值为:%d\n",n);printf("*pFloat的值为:%f\n",*pFloat);return 0;
}

在这里插入图片描述
num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法,详细解读:
根据IEEE,任意一个二进制浮点数V可以表示成下面的形式:

~(-1)^SM2*E
~ (-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数
~ M表示有效数字,大于等于1,小于2
~ 2^E表示指数位

举例来说:
十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。
那么,按照上面V的格式,可以得出S=0,M=1.01,E=2
十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2,那么,S=1,M=1.01,E=2
IEEE 754规定:
对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M
在这里插入图片描述
对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M
在这里插入图片描述
IEEE 754对有效数字M和指数E,还有一些特别规定,1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分,IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分,比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位,浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字
至于指数E,情况就比较复杂,首先,E为一个无符号整数(unsigned int)这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0 ~ 2047,但是,我们知道,科学计数法中的E是可以出
现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001
然后,指数E从内存中取出还可以再分成三种情况:
E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1,比如:0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其阶码为-1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为:0 01111110 00000000000000000000000
E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数,这样做是为了表示±0,以及接近于0的很小的数字
E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s)
解释一下前面的题目哈:
下面,让我们回到一开始的问题:为什么 0x00000009 还原成浮点数,就成了 0.000000 ?
首先,9在计算机中是以补码存储的 9 -> 0000 0000 0000 0000 0000 0000 0000 1001,如果以浮点数读取的话,得到第一位符号位s=0,后面8位的指数 E=00000000 ,最后23位的有效数字M=000 0000 0000 0000 0000 1001,由于指数E全为0,所以符合上一节的第二种情况。因此,浮点数V就写成:
在这里插入图片描述
显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000
再看例题的第二部分
请问浮点数9.0,如何用二进制表示?还原成十进制又是多少?
首先,浮点数9.0等于二进制的1001.0,即1.001×2^3
在这里插入图片描述
那么,第一位的符号位s=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130,即10000010,所以,写成二进制形式,应该是s+E+M,即
在这里插入图片描述
这个32位的二进制数,还原成十进制,正是 1091567616

相关文章:

数据在内存中的存储(deeper)

数据在内存中的存储&#xff08;deeper&#xff09; 一.数据类型的详细介绍二.整形在内存中的存储三.浮点型在内存中的存储 一.数据类型的详细介绍 类型的意义&#xff1a; 使用这个类型开辟内存空间的大小&#xff08;大小决定了使用范围&#xff09;如何看待内存空间的视角…...

算法修炼Day52|● 300.最长递增子序列 ● 674. 最长连续递增序列 ● 718. 最长重复子数组

LeetCode:300.最长递增子序列 300. 最长递增子序列 - 力扣&#xff08;LeetCode&#xff09; 1.思路 dp[i]的状态表示以nums[i]为结尾的最长递增子序列的个数。 dp[i]有很多个&#xff0c;选择其中最大的dp[i]Math.max(dp[j]1,dp[i]) 2.代码实现 1class Solution {2 pub…...

使用 HTML、CSS 和 JavaScript 创建实时 Web 编辑器

使用 HTML、CSS 和 JavaScript 创建实时 Web 编辑器 在本文中&#xff0c;我们将创建一个实时网页编辑器。这是一个 Web 应用程序&#xff0c;允许我们在网页上编写 HTML、CSS 和 JavaScript 代码并实时查看结果。这是学习 Web 开发和测试代码片段的绝佳工具。我们将使用ifram…...

百望云联合华为发布票财税链一体化数智解决方案 赋能企业数字化升级

随着数据跃升为数字经济关键生产要素&#xff0c;数据安全成为整个数字化建设的重中之重。为更好地帮助企业发展&#xff0c;中央及全国和地方政府相继出台了多部与数据相关的政策法规&#xff0c;鼓励各领域服务商提供具有自主创新的软件产品与服务&#xff0c;帮助企业在合规…...

实现两个栈模拟队列

实现两个栈模拟队列 思路&#xff1a;可以想象一下左手和右手&#xff0c;两个栈&#xff1a;stack1&#xff08;数据所在的栈&#xff09; &#xff0c;stack2&#xff08;临时存放&#xff09;。 入队&#xff1a;需要将入队 num 加在 stack1 的栈顶即可&#xff1b; 出队&am…...

无涯教程-TensorFlow - 单词嵌入

Word embedding是从离散对象(如单词)映射到向量和实数的概念&#xff0c;可将离散的输入对象有效地转换为有用的向量。 Word embedding的输入如下所示: blue: (0.01359, 0.00075997, 0.24608, ..., -0.2524, 1.0048, 0.06259) blues: (0.01396, 0.11887, -0.48963, ..., 0.03…...

Facebook AI mBART:巴别塔的硅解

2018年&#xff0c;谷歌发布了BERT&#xff08;来自transformers的双向编码器表示&#xff09;&#xff0c;这是一种预训练的语言模型&#xff0c;在一系列自然语言处理&#xff08;NLP&#xff09;任务中对SOTA结果进行评分&#xff0c;并彻底改变了研究领域。类似的基于变压器…...

BDA初级分析——SQL清洗和整理数据

一、数据处理 数据处理之类型转换 字符格式与数值格式存储的数据&#xff0c;同样是进行大小排序&#xff0c; 会有什么区别&#xff1f; 以rev为例&#xff0c;看看字符格式与数值格式存储时&#xff0c;排序会有什么区别&#xff1f; 用cast as转换为字符后进行排序 SEL…...

汽车后视镜反射率测定仪

后视镜是驾驶员坐在驾驶室座位上直接获取汽车后方、侧方和下方等外部信息的工具。它起着“第三只眼睛”的作用。后视镜按安装位置划分通常分为车外后视镜、监视镜和内后视镜。外后视镜观察汽车后侧方监视镜观察汽车前下方内后视镜观察汽车后方及车内情况。用途不一样镜面结构也…...

Redis学习笔记

redis相关内容 默认端口6379 默认16个数据库&#xff0c;初始默认使用0号库 使用select 切换数据库 统一密码管理&#xff0c;所有库密码相同 dbsize&#xff1a;查看当前库key的数量 flushdb&#xff1a;清空当前库 flushall&#xff1a;清空全部库 redis是单线程 多路…...

韩顺平Linux 四十四--

四十四、rwx权限 权限的基本介绍 输入指令 ls -l 显示的内容如下 -rwxrw-r-- 1 root 1213 Feb 2 09:39 abc0-9位说明 第0位确定文件类型&#xff08;d , - , l , c , b) l 是链接&#xff0c;相当于 windows 的快捷方式- 代表是文件是普通文件d 是目录&#xff0c;相…...

【支付宝小程序】分包优化教程

&#x1f996;我是Sam9029&#xff0c;一个前端 Sam9029的CSDN博客主页:Sam9029的博客_CSDN博客-JS学习,CSS学习,Vue-2领域博主 &#x1f431;‍&#x1f409;&#x1f431;‍&#x1f409;恭喜你&#xff0c;若此文你认为写的不错&#xff0c;不要吝啬你的赞扬&#xff0c;求收…...

语言基础2 矩阵和数组

语言基础2 矩阵和数组 矩阵和数组是matlab中信息和数据的基本表示形式 可以创建常用的数组和网格 合并现有的数组 操作数组的形状和内容 以及使用索引访问数组元素 用到的函数列表如下 一 创建 串联和扩展矩阵 矩阵时按行和列排列的数据元素的二维数据元素的二维矩…...

springMVC中过滤器抛出异常,自定义异常捕获

在过滤器中引入org.springframework.web.servlet.HandlerExceptionResolver AutowiredQualifier("handlerExceptionResolver")private HandlerExceptionResolver resolver; // doFilter中处理if (条件1) {if (条件2) {resolver.resolveException(request, response, …...

图像检索技术研究:深度度量与深度散列在相似性学习中的应用比较与实践 - 使用Python与Jupyter环境

引言 在计算机视觉领域&#xff0c;图像检索是一个长期存在并持续受到研究者关注的重要话题。随着大数据时代的到来&#xff0c;如何高效、准确地从海量数据中检索到相似的图像成为一个巨大的挑战。传统的检索方法在大数据环境下表现不佳&#xff0c;而深度学习技术的崛起为图…...

CSS加载失败的6个原因

有很多刚刚接触 CSS 的新手有时会遇到 CSS 加载失败这个问题&#xff0c;但测试时&#xff0c;网页上没有显示该样式的问题&#xff0c;这就说明 CSS 加载失败了。出现这种状况一般是因为的 CSS 路径书写错&#xff0c;或者是在浏览器中禁止掉了 CSS 的加载&#xff0c;可以重新…...

react之路由的安装与使用

一、路由安装 路由官网2021.11月初&#xff0c;react-router 更新到 v6 版本。使用最广泛的 v5 版本的使用 npm i react-router-dom5.3.0二、路由使用 2.1 路由的简单使用 第一步 在根目录下 创建 views 文件夹 ,用于放置路由页面 films.js示例代码 export default functio…...

基于RoCE的应用程序的MTU注意事项

目录 基于RoCE的应用程序的MTU注意事项 探测网络中的MTU设置 概要 原文 MTU测试结果 DOC: CentOS安装tshark抓包工具 基于RoCE的应用程序的MTU注意事项 原文&#xff1a;https://support.mellanox.com/s/article/MLNX2-117-1682kn InfiniBand协议最大传输单元&#xff…...

springboot集成Graphql相关问题汇总

1、idea在debug运行时出现java.lang.NoClassDefFoundError:kotlin/collections/AbstractMutableMap 解决&#xff1a;禁用idea dubugger中kotlin coroutine agent 见&#xff1a;https://stackoverflow.com/questions/70796177/after-the-spring-boot-source-code-is-compile…...

Angular16的路由守卫基础使用

Angular16的路由守卫基础使用 使用ng generate guard /guard/login命令生成guard文件因新版Angular取消了CanActivate的使用&#xff0c;改用CanActivateFn&#xff0c;因此使用router跳转需要通过inject的方式导入。 import { inject } from angular/core; import { CanActi…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

C++初阶-list的底层

目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving

地址&#xff1a;LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂&#xff0c;正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...

负载均衡器》》LVS、Nginx、HAproxy 区别

虚拟主机 先4&#xff0c;后7...

【java】【服务器】线程上下文丢失 是指什么

目录 ■前言 ■正文开始 线程上下文的核心组成部分 为什么会出现上下文丢失&#xff1f; 直观示例说明 为什么上下文如此重要&#xff1f; 解决上下文丢失的关键 总结 ■如果我想在servlet中使用线程&#xff0c;代码应该如何实现 推荐方案&#xff1a;使用 ManagedE…...

AWS vs 阿里云:功能、服务与性能对比指南

在云计算领域&#xff0c;Amazon Web Services (AWS) 和阿里云 (Alibaba Cloud) 是全球领先的提供商&#xff0c;各自在功能范围、服务生态系统、性能表现和适用场景上具有独特优势。基于提供的引用[1]-[5]&#xff0c;我将从功能、服务和性能三个方面进行结构化对比分析&#…...