当前位置: 首页 > news >正文

python、numpy、pytorch中的浅拷贝和深拷贝

1、Python中的浅拷贝和深拷贝

import copya = [1, 2, 3, 4, [11, 22, 33, [111, 222]]]
b = a
c = a.copy()
d = copy.deepcopy(a)print('before modify\r\n a=\r\n', a, '\r\n','b = a=\r\n', b, '\r\n','c = a.copy()=\r\n', c, '\r\n','d = copy.deepcopy(a)\r\n', d, '\r\n')
 before modify
 a=
 [1, 2, 3, 4, [11, 22, 33, [111, 222]]] 
 b = a=
 [1, 2, 3, 4, [11, 22, 33, [111, 222]]] 
 c = a.copy()=
 [1, 2, 3, 4, [11, 22, 33, [111, 222]]] 
 d = copy.deepcopy(a)
 [1, 2, 3, 4, [11, 22, 33, [111, 222]]] 

注:图片网址Python Tutor code visualizer: Visualize code in Python, JavaScript, C, C++, and Java

a[0] = 10
print('after a[0] = 10\r\n a=\r\n', a, '\r\n','b = a=\r\n', b, '\r\n','c = a.copy()=\r\n', c, '\r\n','d = copy.deepcopy(a)\r\n', d, '\r\n')
 after a[0] = 10
 a=
 [10, 2, 3, 4, [11, 22, 33, [111, 222]]] 
 b = a=
 [10, 2, 3, 4, [11, 22, 33, [111, 222]]] 
 c = a.copy()=
 [1, 2, 3, 4, [11, 22, 33, [111, 222]]] 
 d = copy.deepcopy(a)
 [1, 2, 3, 4, [11, 22, 33, [111, 222]]] 
a[4][0] = 100
print('after a[4][0] = 100\r\n a=\r\n', a, '\r\n','b = a=\r\n', b, '\r\n','c = a.copy()=\r\n', c, '\r\n','d = copy.deepcopy(a)\r\n', d, '\r\n')
after a[4][0] = 100
 a=
 [10, 2, 3, 4, [100, 22, 33, [111, 222]]] 
 b = a=
 [10, 2, 3, 4, [100, 22, 33, [111, 222]]] 
 c = a.copy()=
 [1, 2, 3, 4, [100, 22, 33, [111, 222]]] 
 d = copy.deepcopy(a)
 [1, 2, 3, 4, [11, 22, 33, [111, 222]]] 
a[4][3][0] = 1000
print('after a[4][3][0] = 1000\r\n a=\r\n', a, '\r\n','b = a=\r\n', b, '\r\n','c = a.copy()=\r\n', c, '\r\n','d = copy.deepcopy(a)\r\n', d, '\r\n')
after a[4][3][0] = 1000
 a=
 [10, 2, 3, 4, [100, 22, 33, [1000, 222]]] 
 b = a=
 [10, 2, 3, 4, [100, 22, 33, [1000, 222]]] 
 c = a.copy()=
 [1, 2, 3, 4, [100, 22, 33, [1000, 222]]] 
 d = copy.deepcopy(a)
 [1, 2, 3, 4, [11, 22, 33, [111, 222]]] 

2、numpy中的浅拷贝和深拷贝

a1 = np.random.randn(2, 3)
b1 = a1
c1 = a1.copy()
d1 = copy.deepcopy(a1)print('before modify\r\n a1=\r\n', a1, '\r\n','b1 = a1=\r\n', b1, '\r\n','c1 = a1.copy()=\r\n', c1, '\r\n','d1 = copy.deepcopy(a1)=\r\n', d1, '\r\n')a1[0] = 10
print('after a1[0] = 10\r\n a1=\r\n', a1, '\r\n','b1 = a1=\r\n', b1, '\r\n','c1 = a1.copy()=\r\n', c1, '\r\n','d1 = copy.deepcopy(a1)=\r\n', d1, '\r\n')

before modify
 a1=
 [[ 1.48618757 -0.90409826  2.05529475]
 [ 0.14232255  2.93331428  0.88511785]] 
 b1 = a1=
 [[ 1.48618757 -0.90409826  2.05529475]
 [ 0.14232255  2.93331428  0.88511785]] 
 c1 = a1.copy()=
 [[ 1.48618757 -0.90409826  2.05529475]
 [ 0.14232255  2.93331428  0.88511785]] 
 d1 = copy.deepcopy(a1)=
 [[ 1.48618757 -0.90409826  2.05529475]
 [ 0.14232255  2.93331428  0.88511785]] 
after a1[0] = 10
 a1=
 [[10.         10.         10.        ]
 [ 0.14232255  2.93331428  0.88511785]] 
 b1 = a1=
 [[10.         10.         10.        ]
 [ 0.14232255  2.93331428  0.88511785]] 
 c1 = a1.copy()=
 [[ 1.48618757 -0.90409826  2.05529475]
 [ 0.14232255  2.93331428  0.88511785]] 
 d1 = copy.deepcopy(a1)=
 [[ 1.48618757 -0.90409826  2.05529475]
 [ 0.14232255  2.93331428  0.88511785]] 

  3、pytorch中的浅拷贝和深拷贝

a2 = torch.randn(2, 3)
b2 = torch.Tensor(a2)
bb2 = torch.tensor(a2)
c2 = a2.detach()
cc2 = a2.clone()
ccc2 = a2.clone().detach()
print('before modify\r\n a2=\r\n', a2, '\r\n','b2 = torch.Tensor(a2)=\r\n', b2, '\r\n','bb2 = torch.tensor(a2)=\r\n', bb2, '\r\n','c2 = a2.detach()=\r\n', c2, '\r\n','cc2 = a2.clone()=\r\n', cc2, '\r\n','ccc2 = a2.clone().detach()=\r\n', ccc2)
a2[0] = 0
print('after modify\r\n a2=\r\n', a2, '\r\n','b2 = torch.Tensor(a2)=\r\n', b2, '\r\n','bb2 = torch.tensor(a2)=\r\n', bb2, '\r\n','c2 = a2.detach()=\r\n', c2, '\r\n','cc2 = a2.clone()=\r\n', cc2, '\r\n','ccc2 = a2.clone().detach()=\r\n', ccc2)

before modify
 a2=
 tensor([[-0.6472,  1.3437, -0.3386],
        [ 0.8979, -0.4158,  1.1338]]) 
 b2 = torch.Tensor(a2)=
 tensor([[-0.6472,  1.3437, -0.3386],
        [ 0.8979, -0.4158,  1.1338]]) 
 bb2 = torch.tensor(a2)=
 tensor([[-0.6472,  1.3437, -0.3386],
        [ 0.8979, -0.4158,  1.1338]]) 
 c2 = a2.detach()=
 tensor([[-0.6472,  1.3437, -0.3386],
        [ 0.8979, -0.4158,  1.1338]]) 
 cc2 = a2.clone()=
 tensor([[-0.6472,  1.3437, -0.3386],
        [ 0.8979, -0.4158,  1.1338]]) 
 ccc2 = a2.clone().detach()=
 tensor([[-0.6472,  1.3437, -0.3386],
        [ 0.8979, -0.4158,  1.1338]])
after modify
 a2=
 tensor([[ 0.0000,  0.0000,  0.0000],
        [ 0.8979, -0.4158,  1.1338]]) 
 b2 = torch.Tensor(a2)=
 tensor([[ 0.0000,  0.0000,  0.0000],
        [ 0.8979, -0.4158,  1.1338]]) 
 bb2 = torch.tensor(a2)=
 tensor([[-0.6472,  1.3437, -0.3386],
        [ 0.8979, -0.4158,  1.1338]]) 
 c2 = a2.detach()=
 tensor([[ 0.0000,  0.0000,  0.0000],
        [ 0.8979, -0.4158,  1.1338]]) 
 cc2 = a2.clone()=
 tensor([[-0.6472,  1.3437, -0.3386],
        [ 0.8979, -0.4158,  1.1338]]) 
 ccc2 = a2.clone().detach()=
 tensor([[-0.6472,  1.3437, -0.3386],
        [ 0.8979, -0.4158,  1.1338]])

 参考

1、B站视频

十分钟!彻底弄懂Python深拷贝与浅拷贝机制_哔哩哔哩_bilibili

11、简书

NumPy之浅拷贝和深拷贝 - 简书 (jianshu.com)

2、CSDN-numpy

 numpy copy(无拷贝 浅拷贝、深拷贝)类型说明_genghaihua的博客-CSDN博客

3、CSDN-pytorch

python、pytorch中的常见的浅拷贝、深拷贝问题总结_pytorch tensor的浅、复制_新嬉皮士的博客-CSDN博客

完整代码

import numpy as np
import copy
import torcha = [1, 2, 3, 4, [11, 22, 33, [111, 222]]]
b = a
c = a.copy()
d = copy.deepcopy(a)print('before modify\r\n a=\r\n', a, '\r\n','b = a=\r\n', b, '\r\n','c = a.copy()=\r\n', c, '\r\n','d = copy.deepcopy(a)\r\n', d, '\r\n')a[0] = 10
print('after a[0] = 10\r\n a=\r\n', a, '\r\n','b = a=\r\n', b, '\r\n','c = a.copy()=\r\n', c, '\r\n','d = copy.deepcopy(a)\r\n', d, '\r\n')a[4][0] = 100
print('after a[4][0] = 100\r\n a=\r\n', a, '\r\n','b = a=\r\n', b, '\r\n','c = a.copy()=\r\n', c, '\r\n','d = copy.deepcopy(a)\r\n', d, '\r\n')a[4][3][0] = 1000
print('after a[4][3][0] = 1000\r\n a=\r\n', a, '\r\n','b = a=\r\n', b, '\r\n','c = a.copy()=\r\n', c, '\r\n','d = copy.deepcopy(a)\r\n', d, '\r\n')a1 = np.random.randn(2, 3)
b1 = a1
c1 = a1.copy()
d1 = copy.deepcopy(a1)print('before modify\r\n a1=\r\n', a1, '\r\n','b1 = a1=\r\n', b1, '\r\n','c1 = a1.copy()=\r\n', c1, '\r\n','d1 = copy.deepcopy(a1)=\r\n', d1, '\r\n')a1[0] = 10
print('after a1[0] = 10\r\n a1=\r\n', a1, '\r\n','b1 = a1=\r\n', b1, '\r\n','c1 = a1.copy()=\r\n', c1, '\r\n','d1 = copy.deepcopy(a1)=\r\n', d1, '\r\n')a2 = torch.randn(2, 3)
b2 = torch.Tensor(a2)
bb2 = torch.tensor(a2)
c2 = a2.detach()
cc2 = a2.clone()
ccc2 = a2.clone().detach()
print('before modify\r\n a2=\r\n', a2, '\r\n','b2 = torch.Tensor(a2)=\r\n', b2, '\r\n','bb2 = torch.tensor(a2)=\r\n', bb2, '\r\n','c2 = a2.detach()=\r\n', c2, '\r\n','cc2 = a2.clone()=\r\n', cc2, '\r\n','ccc2 = a2.clone().detach()=\r\n', ccc2)
a2[0] = 0
print('after a2[0] = 0\r\n a2=\r\n', a2, '\r\n','b2 = torch.Tensor(a2)=\r\n', b2, '\r\n','bb2 = torch.tensor(a2)=\r\n', bb2, '\r\n','c2 = a2.detach()=\r\n', c2, '\r\n','cc2 = a2.clone()=\r\n', cc2, '\r\n','ccc2 = a2.clone().detach()=\r\n', ccc2)

相关文章:

python、numpy、pytorch中的浅拷贝和深拷贝

1、Python中的浅拷贝和深拷贝 import copya [1, 2, 3, 4, [11, 22, 33, [111, 222]]] b a c a.copy() d copy.deepcopy(a)print(before modify\r\n a\r\n, a, \r\n,b a\r\n, b, \r\n,c a.copy()\r\n, c, \r\n,d copy.deepcopy(a)\r\n, d, \r\n)before modify a [1, 2…...

EasyRecovery14数据恢复软件支持各类存储设备的数据恢复

EasyRecovery14数据恢复软件专业数据恢复软件支持电脑、相机、移动硬盘、U盘、SD卡、内存卡、光盘、本地电子邮件和 RAID 磁盘阵列等各类存储设备的数据恢复。 目前市面上有许多数据恢复软件,但褒贬不一,而且数据恢复软件又不是一款会被经常使用的软件&a…...

玩机搞机----面具模块的组成 制作模块

root面具相信很多玩家都不陌生。早期玩友大都使用第三方卡刷补丁来对系统进行各种修复和添加功能。目前面具补丁代替了这些操作。今天的帖子了解下面具各种模块的组成和几种普遍的代码组成。 Magisk中运行的每个单独的shell脚本都将在内部的BusyBox的shell中执行。对于与第三方…...

注册中心/配置管理 —— SpringCloud Consul

Consul 概述 Consul 是一个可以提供服务发现,健康检查,多数据中心,key/Value 存储的分布式服务框架,用于实现分布式系统的发现与配置。Cousul 使用 Go 语言实现,因此天然具有可移植性,安装包仅包含一个可执…...

Next.js 13 你需要了解的 8 件事

目录 React 服务器组件 (RSC)服务器组件默认开启在 Next.js 中客户端组件也在服务器上呈现!组成客户端和服务器组件编译Next.js 13 渲染模式桶文件有点坏了库集成:WIP 仍在进行中Route groups 路由组总结 在本文中,我们…...

计数排序(Count Sort)算法详解

1. 算法简介 计数排序(Count Sort)是一种非比较排序算法,其核心思想是统计数组中每个元素出现的次数,然后根据统计结果将元素按照顺序放回原数组中。计数排序的时间复杂度为O(nk),其中n是数组的长度,k是数…...

Linux驱动开发(Day3)

驱动点灯:...

使用Vscode调试shell脚本

在vcode中安装bash dug插件 在vcode中添加launch.json配置,默认就好 参考:http://www.rply.cn/news/73966.html 推荐插件: shellman(支持shell,智能提示) shellcheck(shell语法检查) shell-format(shell格式化)...

OpenAI Function calling

开篇 原文出处 最近 OpenAI 在 6 月 13 号发布了新 feature,主要针对模型进行了优化,提供了 function calling 的功能,该 feature 对于很多集成 OpenAI 的应用来说绝对是一个“神器”。 Prompt 的演进 如果初看 OpenAI 官网对function ca…...

【C语言】字符分类函数、字符转换函数、内存函数

前言 之前我们用两篇文章介绍了strlen、strcpy、stract、strcmp、strncpy、strncat、strncmp、strstr、strtok、streeror这些函数 第一篇文章strlen、strcpy、stract 第二篇文章strcmp、strncpy、strncat、strncmp 第三篇文章strstr、strtok、streeror 今天我们就来学习字…...

Deep Learning With Pytorch - 最基本的感知机、贯序模型/分类、拟合

文章目录 如何利用pytorch创建一个简单的网络模型?Step1. 感知机,多层感知机(MLP)的基本结构Step2. 超平面 ω T ⋅ x b 0 \omega^{T}xb0 ωT⋅xb0 or ω T ⋅ x b \omega^{T}xb ωT⋅xb感知机函数 Step3. 利用感知机进行决策…...

测试工具coverage的高阶使用

在文章Python之单元测试使用的一点心得中,笔者介绍了自己在使用Python测试工具coverge的一点心得,包括: 使用coverage模块计算代码测试覆盖率使用coverage api计算代码测试覆盖率coverage配置文件的使用coverage badge的生成 本文在此基础上…...

安卓监听端口接收消息

文章目录 其他文章监听端口接收消息 建立新线程完整代码 其他文章 下面是我的另一篇文章,是在电脑上发送数据,配合本篇文章,可以实现电脑与手机的局域网通讯。直接复制粘贴就能行,非常滴好用。 点击连接 另外,如果你不…...

「Node」下载安装配置node.js

以下是Node.js的下载、安装和配置的全面教程: 下载 Node.js 打开 Node.js 官方网站:Previous Releases在主页上,您会看到两个版本可供选择:LTS(长期支持版本)和最新版(Current)。如…...

NOIP2014普及组,提高组 比例简化 飞扬的小鸟 答案

比例简化 说明 在社交媒体上,经常会看到针对某一个观点同意与否的民意调查以及结果。例如,对某一观点表示支持的有1498 人,反对的有 902人,那么赞同与反对的比例可以简单的记为1498:902。 不过,如果把调查结果就以这种…...

【Java】使用Apache POI识别PPT中的图片和文字,以及对应的大小、坐标、颜色、字体等

本文介绍如何使用Apache POI识别PPT中的图片和文字,获取图片的数据、大小、尺寸、坐标,以及获取文字的字体、大小、颜色、坐标。 官方文档:https://poi.apache.org/components/slideshow/xslf-cookbook.html 官方文档和网上的资料介绍的很少…...

根据源码,模拟实现 RabbitMQ - 实现消息持久化,统一硬盘操作(3)

目录 一、实现消息持久化 1.1、消息的存储设定 1.1.1、存储方式 1.1.2、存储格式约定 1.1.3、queue_data.txt 文件内容 1.1.4、queue_stat.txt 文件内容 1.2、实现 MessageFileManager 类 1.2.1、设计目录结构和文件格式 1.2.2、实现消息的写入 1.2.3、实现消息的删除…...

找到所有数组中消失的数(C语言详解)

题目:找到所有数组中消失的数 题目详情: 给你一个含 n 个整数的数组 nums ,其中 nums[i] 在区间 [1,n] 内。请你找出所以在 [1,n] 范围内但没有出现在 nums 中的数字,并以数组的形式返回结果。 示例1: 输入&#xf…...

计算机毕设项目之基于django+mysql的疫情实时监控大屏系统(前后全分离)

系统阐述的是一款新冠肺炎疫情实时监控系统的设计与实现,对于Python、B/S结构、MySql进行了较为深入的学习与应用。主要针对系统的设计,描述,实现和分析与测试方面来表明开发的过程。开发中使用了 django框架和MySql数据库技术搭建系统的整体…...

Unity UI内存泄漏优化

项目一运行,占用的内存越来越多,不会释放,导致GC越来越频繁,越来越慢,这些都是为什么呢,今天从UI方面谈起。 首先让我们来聊聊什么是内存泄漏呢? 一般来讲内存泄漏就是指我们的应用向内存申请…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...

【Oracle APEX开发小技巧12】

有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

基础测试工具使用经验

背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...