当前位置: 首页 > news >正文

python、numpy、pytorch中的浅拷贝和深拷贝

1、Python中的浅拷贝和深拷贝

import copya = [1, 2, 3, 4, [11, 22, 33, [111, 222]]]
b = a
c = a.copy()
d = copy.deepcopy(a)print('before modify\r\n a=\r\n', a, '\r\n','b = a=\r\n', b, '\r\n','c = a.copy()=\r\n', c, '\r\n','d = copy.deepcopy(a)\r\n', d, '\r\n')
 before modify
 a=
 [1, 2, 3, 4, [11, 22, 33, [111, 222]]] 
 b = a=
 [1, 2, 3, 4, [11, 22, 33, [111, 222]]] 
 c = a.copy()=
 [1, 2, 3, 4, [11, 22, 33, [111, 222]]] 
 d = copy.deepcopy(a)
 [1, 2, 3, 4, [11, 22, 33, [111, 222]]] 

注:图片网址Python Tutor code visualizer: Visualize code in Python, JavaScript, C, C++, and Java

a[0] = 10
print('after a[0] = 10\r\n a=\r\n', a, '\r\n','b = a=\r\n', b, '\r\n','c = a.copy()=\r\n', c, '\r\n','d = copy.deepcopy(a)\r\n', d, '\r\n')
 after a[0] = 10
 a=
 [10, 2, 3, 4, [11, 22, 33, [111, 222]]] 
 b = a=
 [10, 2, 3, 4, [11, 22, 33, [111, 222]]] 
 c = a.copy()=
 [1, 2, 3, 4, [11, 22, 33, [111, 222]]] 
 d = copy.deepcopy(a)
 [1, 2, 3, 4, [11, 22, 33, [111, 222]]] 
a[4][0] = 100
print('after a[4][0] = 100\r\n a=\r\n', a, '\r\n','b = a=\r\n', b, '\r\n','c = a.copy()=\r\n', c, '\r\n','d = copy.deepcopy(a)\r\n', d, '\r\n')
after a[4][0] = 100
 a=
 [10, 2, 3, 4, [100, 22, 33, [111, 222]]] 
 b = a=
 [10, 2, 3, 4, [100, 22, 33, [111, 222]]] 
 c = a.copy()=
 [1, 2, 3, 4, [100, 22, 33, [111, 222]]] 
 d = copy.deepcopy(a)
 [1, 2, 3, 4, [11, 22, 33, [111, 222]]] 
a[4][3][0] = 1000
print('after a[4][3][0] = 1000\r\n a=\r\n', a, '\r\n','b = a=\r\n', b, '\r\n','c = a.copy()=\r\n', c, '\r\n','d = copy.deepcopy(a)\r\n', d, '\r\n')
after a[4][3][0] = 1000
 a=
 [10, 2, 3, 4, [100, 22, 33, [1000, 222]]] 
 b = a=
 [10, 2, 3, 4, [100, 22, 33, [1000, 222]]] 
 c = a.copy()=
 [1, 2, 3, 4, [100, 22, 33, [1000, 222]]] 
 d = copy.deepcopy(a)
 [1, 2, 3, 4, [11, 22, 33, [111, 222]]] 

2、numpy中的浅拷贝和深拷贝

a1 = np.random.randn(2, 3)
b1 = a1
c1 = a1.copy()
d1 = copy.deepcopy(a1)print('before modify\r\n a1=\r\n', a1, '\r\n','b1 = a1=\r\n', b1, '\r\n','c1 = a1.copy()=\r\n', c1, '\r\n','d1 = copy.deepcopy(a1)=\r\n', d1, '\r\n')a1[0] = 10
print('after a1[0] = 10\r\n a1=\r\n', a1, '\r\n','b1 = a1=\r\n', b1, '\r\n','c1 = a1.copy()=\r\n', c1, '\r\n','d1 = copy.deepcopy(a1)=\r\n', d1, '\r\n')

before modify
 a1=
 [[ 1.48618757 -0.90409826  2.05529475]
 [ 0.14232255  2.93331428  0.88511785]] 
 b1 = a1=
 [[ 1.48618757 -0.90409826  2.05529475]
 [ 0.14232255  2.93331428  0.88511785]] 
 c1 = a1.copy()=
 [[ 1.48618757 -0.90409826  2.05529475]
 [ 0.14232255  2.93331428  0.88511785]] 
 d1 = copy.deepcopy(a1)=
 [[ 1.48618757 -0.90409826  2.05529475]
 [ 0.14232255  2.93331428  0.88511785]] 
after a1[0] = 10
 a1=
 [[10.         10.         10.        ]
 [ 0.14232255  2.93331428  0.88511785]] 
 b1 = a1=
 [[10.         10.         10.        ]
 [ 0.14232255  2.93331428  0.88511785]] 
 c1 = a1.copy()=
 [[ 1.48618757 -0.90409826  2.05529475]
 [ 0.14232255  2.93331428  0.88511785]] 
 d1 = copy.deepcopy(a1)=
 [[ 1.48618757 -0.90409826  2.05529475]
 [ 0.14232255  2.93331428  0.88511785]] 

  3、pytorch中的浅拷贝和深拷贝

a2 = torch.randn(2, 3)
b2 = torch.Tensor(a2)
bb2 = torch.tensor(a2)
c2 = a2.detach()
cc2 = a2.clone()
ccc2 = a2.clone().detach()
print('before modify\r\n a2=\r\n', a2, '\r\n','b2 = torch.Tensor(a2)=\r\n', b2, '\r\n','bb2 = torch.tensor(a2)=\r\n', bb2, '\r\n','c2 = a2.detach()=\r\n', c2, '\r\n','cc2 = a2.clone()=\r\n', cc2, '\r\n','ccc2 = a2.clone().detach()=\r\n', ccc2)
a2[0] = 0
print('after modify\r\n a2=\r\n', a2, '\r\n','b2 = torch.Tensor(a2)=\r\n', b2, '\r\n','bb2 = torch.tensor(a2)=\r\n', bb2, '\r\n','c2 = a2.detach()=\r\n', c2, '\r\n','cc2 = a2.clone()=\r\n', cc2, '\r\n','ccc2 = a2.clone().detach()=\r\n', ccc2)

before modify
 a2=
 tensor([[-0.6472,  1.3437, -0.3386],
        [ 0.8979, -0.4158,  1.1338]]) 
 b2 = torch.Tensor(a2)=
 tensor([[-0.6472,  1.3437, -0.3386],
        [ 0.8979, -0.4158,  1.1338]]) 
 bb2 = torch.tensor(a2)=
 tensor([[-0.6472,  1.3437, -0.3386],
        [ 0.8979, -0.4158,  1.1338]]) 
 c2 = a2.detach()=
 tensor([[-0.6472,  1.3437, -0.3386],
        [ 0.8979, -0.4158,  1.1338]]) 
 cc2 = a2.clone()=
 tensor([[-0.6472,  1.3437, -0.3386],
        [ 0.8979, -0.4158,  1.1338]]) 
 ccc2 = a2.clone().detach()=
 tensor([[-0.6472,  1.3437, -0.3386],
        [ 0.8979, -0.4158,  1.1338]])
after modify
 a2=
 tensor([[ 0.0000,  0.0000,  0.0000],
        [ 0.8979, -0.4158,  1.1338]]) 
 b2 = torch.Tensor(a2)=
 tensor([[ 0.0000,  0.0000,  0.0000],
        [ 0.8979, -0.4158,  1.1338]]) 
 bb2 = torch.tensor(a2)=
 tensor([[-0.6472,  1.3437, -0.3386],
        [ 0.8979, -0.4158,  1.1338]]) 
 c2 = a2.detach()=
 tensor([[ 0.0000,  0.0000,  0.0000],
        [ 0.8979, -0.4158,  1.1338]]) 
 cc2 = a2.clone()=
 tensor([[-0.6472,  1.3437, -0.3386],
        [ 0.8979, -0.4158,  1.1338]]) 
 ccc2 = a2.clone().detach()=
 tensor([[-0.6472,  1.3437, -0.3386],
        [ 0.8979, -0.4158,  1.1338]])

 参考

1、B站视频

十分钟!彻底弄懂Python深拷贝与浅拷贝机制_哔哩哔哩_bilibili

11、简书

NumPy之浅拷贝和深拷贝 - 简书 (jianshu.com)

2、CSDN-numpy

 numpy copy(无拷贝 浅拷贝、深拷贝)类型说明_genghaihua的博客-CSDN博客

3、CSDN-pytorch

python、pytorch中的常见的浅拷贝、深拷贝问题总结_pytorch tensor的浅、复制_新嬉皮士的博客-CSDN博客

完整代码

import numpy as np
import copy
import torcha = [1, 2, 3, 4, [11, 22, 33, [111, 222]]]
b = a
c = a.copy()
d = copy.deepcopy(a)print('before modify\r\n a=\r\n', a, '\r\n','b = a=\r\n', b, '\r\n','c = a.copy()=\r\n', c, '\r\n','d = copy.deepcopy(a)\r\n', d, '\r\n')a[0] = 10
print('after a[0] = 10\r\n a=\r\n', a, '\r\n','b = a=\r\n', b, '\r\n','c = a.copy()=\r\n', c, '\r\n','d = copy.deepcopy(a)\r\n', d, '\r\n')a[4][0] = 100
print('after a[4][0] = 100\r\n a=\r\n', a, '\r\n','b = a=\r\n', b, '\r\n','c = a.copy()=\r\n', c, '\r\n','d = copy.deepcopy(a)\r\n', d, '\r\n')a[4][3][0] = 1000
print('after a[4][3][0] = 1000\r\n a=\r\n', a, '\r\n','b = a=\r\n', b, '\r\n','c = a.copy()=\r\n', c, '\r\n','d = copy.deepcopy(a)\r\n', d, '\r\n')a1 = np.random.randn(2, 3)
b1 = a1
c1 = a1.copy()
d1 = copy.deepcopy(a1)print('before modify\r\n a1=\r\n', a1, '\r\n','b1 = a1=\r\n', b1, '\r\n','c1 = a1.copy()=\r\n', c1, '\r\n','d1 = copy.deepcopy(a1)=\r\n', d1, '\r\n')a1[0] = 10
print('after a1[0] = 10\r\n a1=\r\n', a1, '\r\n','b1 = a1=\r\n', b1, '\r\n','c1 = a1.copy()=\r\n', c1, '\r\n','d1 = copy.deepcopy(a1)=\r\n', d1, '\r\n')a2 = torch.randn(2, 3)
b2 = torch.Tensor(a2)
bb2 = torch.tensor(a2)
c2 = a2.detach()
cc2 = a2.clone()
ccc2 = a2.clone().detach()
print('before modify\r\n a2=\r\n', a2, '\r\n','b2 = torch.Tensor(a2)=\r\n', b2, '\r\n','bb2 = torch.tensor(a2)=\r\n', bb2, '\r\n','c2 = a2.detach()=\r\n', c2, '\r\n','cc2 = a2.clone()=\r\n', cc2, '\r\n','ccc2 = a2.clone().detach()=\r\n', ccc2)
a2[0] = 0
print('after a2[0] = 0\r\n a2=\r\n', a2, '\r\n','b2 = torch.Tensor(a2)=\r\n', b2, '\r\n','bb2 = torch.tensor(a2)=\r\n', bb2, '\r\n','c2 = a2.detach()=\r\n', c2, '\r\n','cc2 = a2.clone()=\r\n', cc2, '\r\n','ccc2 = a2.clone().detach()=\r\n', ccc2)

相关文章:

python、numpy、pytorch中的浅拷贝和深拷贝

1、Python中的浅拷贝和深拷贝 import copya [1, 2, 3, 4, [11, 22, 33, [111, 222]]] b a c a.copy() d copy.deepcopy(a)print(before modify\r\n a\r\n, a, \r\n,b a\r\n, b, \r\n,c a.copy()\r\n, c, \r\n,d copy.deepcopy(a)\r\n, d, \r\n)before modify a [1, 2…...

EasyRecovery14数据恢复软件支持各类存储设备的数据恢复

EasyRecovery14数据恢复软件专业数据恢复软件支持电脑、相机、移动硬盘、U盘、SD卡、内存卡、光盘、本地电子邮件和 RAID 磁盘阵列等各类存储设备的数据恢复。 目前市面上有许多数据恢复软件,但褒贬不一,而且数据恢复软件又不是一款会被经常使用的软件&a…...

玩机搞机----面具模块的组成 制作模块

root面具相信很多玩家都不陌生。早期玩友大都使用第三方卡刷补丁来对系统进行各种修复和添加功能。目前面具补丁代替了这些操作。今天的帖子了解下面具各种模块的组成和几种普遍的代码组成。 Magisk中运行的每个单独的shell脚本都将在内部的BusyBox的shell中执行。对于与第三方…...

注册中心/配置管理 —— SpringCloud Consul

Consul 概述 Consul 是一个可以提供服务发现,健康检查,多数据中心,key/Value 存储的分布式服务框架,用于实现分布式系统的发现与配置。Cousul 使用 Go 语言实现,因此天然具有可移植性,安装包仅包含一个可执…...

Next.js 13 你需要了解的 8 件事

目录 React 服务器组件 (RSC)服务器组件默认开启在 Next.js 中客户端组件也在服务器上呈现!组成客户端和服务器组件编译Next.js 13 渲染模式桶文件有点坏了库集成:WIP 仍在进行中Route groups 路由组总结 在本文中,我们…...

计数排序(Count Sort)算法详解

1. 算法简介 计数排序(Count Sort)是一种非比较排序算法,其核心思想是统计数组中每个元素出现的次数,然后根据统计结果将元素按照顺序放回原数组中。计数排序的时间复杂度为O(nk),其中n是数组的长度,k是数…...

Linux驱动开发(Day3)

驱动点灯:...

使用Vscode调试shell脚本

在vcode中安装bash dug插件 在vcode中添加launch.json配置,默认就好 参考:http://www.rply.cn/news/73966.html 推荐插件: shellman(支持shell,智能提示) shellcheck(shell语法检查) shell-format(shell格式化)...

OpenAI Function calling

开篇 原文出处 最近 OpenAI 在 6 月 13 号发布了新 feature,主要针对模型进行了优化,提供了 function calling 的功能,该 feature 对于很多集成 OpenAI 的应用来说绝对是一个“神器”。 Prompt 的演进 如果初看 OpenAI 官网对function ca…...

【C语言】字符分类函数、字符转换函数、内存函数

前言 之前我们用两篇文章介绍了strlen、strcpy、stract、strcmp、strncpy、strncat、strncmp、strstr、strtok、streeror这些函数 第一篇文章strlen、strcpy、stract 第二篇文章strcmp、strncpy、strncat、strncmp 第三篇文章strstr、strtok、streeror 今天我们就来学习字…...

Deep Learning With Pytorch - 最基本的感知机、贯序模型/分类、拟合

文章目录 如何利用pytorch创建一个简单的网络模型?Step1. 感知机,多层感知机(MLP)的基本结构Step2. 超平面 ω T ⋅ x b 0 \omega^{T}xb0 ωT⋅xb0 or ω T ⋅ x b \omega^{T}xb ωT⋅xb感知机函数 Step3. 利用感知机进行决策…...

测试工具coverage的高阶使用

在文章Python之单元测试使用的一点心得中,笔者介绍了自己在使用Python测试工具coverge的一点心得,包括: 使用coverage模块计算代码测试覆盖率使用coverage api计算代码测试覆盖率coverage配置文件的使用coverage badge的生成 本文在此基础上…...

安卓监听端口接收消息

文章目录 其他文章监听端口接收消息 建立新线程完整代码 其他文章 下面是我的另一篇文章,是在电脑上发送数据,配合本篇文章,可以实现电脑与手机的局域网通讯。直接复制粘贴就能行,非常滴好用。 点击连接 另外,如果你不…...

「Node」下载安装配置node.js

以下是Node.js的下载、安装和配置的全面教程: 下载 Node.js 打开 Node.js 官方网站:Previous Releases在主页上,您会看到两个版本可供选择:LTS(长期支持版本)和最新版(Current)。如…...

NOIP2014普及组,提高组 比例简化 飞扬的小鸟 答案

比例简化 说明 在社交媒体上,经常会看到针对某一个观点同意与否的民意调查以及结果。例如,对某一观点表示支持的有1498 人,反对的有 902人,那么赞同与反对的比例可以简单的记为1498:902。 不过,如果把调查结果就以这种…...

【Java】使用Apache POI识别PPT中的图片和文字,以及对应的大小、坐标、颜色、字体等

本文介绍如何使用Apache POI识别PPT中的图片和文字,获取图片的数据、大小、尺寸、坐标,以及获取文字的字体、大小、颜色、坐标。 官方文档:https://poi.apache.org/components/slideshow/xslf-cookbook.html 官方文档和网上的资料介绍的很少…...

根据源码,模拟实现 RabbitMQ - 实现消息持久化,统一硬盘操作(3)

目录 一、实现消息持久化 1.1、消息的存储设定 1.1.1、存储方式 1.1.2、存储格式约定 1.1.3、queue_data.txt 文件内容 1.1.4、queue_stat.txt 文件内容 1.2、实现 MessageFileManager 类 1.2.1、设计目录结构和文件格式 1.2.2、实现消息的写入 1.2.3、实现消息的删除…...

找到所有数组中消失的数(C语言详解)

题目:找到所有数组中消失的数 题目详情: 给你一个含 n 个整数的数组 nums ,其中 nums[i] 在区间 [1,n] 内。请你找出所以在 [1,n] 范围内但没有出现在 nums 中的数字,并以数组的形式返回结果。 示例1: 输入&#xf…...

计算机毕设项目之基于django+mysql的疫情实时监控大屏系统(前后全分离)

系统阐述的是一款新冠肺炎疫情实时监控系统的设计与实现,对于Python、B/S结构、MySql进行了较为深入的学习与应用。主要针对系统的设计,描述,实现和分析与测试方面来表明开发的过程。开发中使用了 django框架和MySql数据库技术搭建系统的整体…...

Unity UI内存泄漏优化

项目一运行,占用的内存越来越多,不会释放,导致GC越来越频繁,越来越慢,这些都是为什么呢,今天从UI方面谈起。 首先让我们来聊聊什么是内存泄漏呢? 一般来讲内存泄漏就是指我们的应用向内存申请…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

MySQL 主从同步异常处理

阅读原文:https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主,遇到的这个错误: Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一,通常表示&#xff…...

0x-3-Oracle 23 ai-sqlcl 25.1 集成安装-配置和优化

是不是受够了安装了oracle database之后sqlplus的简陋,无法删除无法上下翻页的苦恼。 可以安装readline和rlwrap插件的话,配置.bahs_profile后也能解决上下翻页这些,但是很多生产环境无法安装rpm包。 oracle提供了sqlcl免费许可&#xff0c…...

DAY 26 函数专题1

函数定义与参数知识点回顾:1. 函数的定义2. 变量作用域:局部变量和全局变量3. 函数的参数类型:位置参数、默认参数、不定参数4. 传递参数的手段:关键词参数5 题目1:计算圆的面积 任务: 编写一…...

数据挖掘是什么?数据挖掘技术有哪些?

目录 一、数据挖掘是什么 二、常见的数据挖掘技术 1. 关联规则挖掘 2. 分类算法 3. 聚类分析 4. 回归分析 三、数据挖掘的应用领域 1. 商业领域 2. 医疗领域 3. 金融领域 4. 其他领域 四、数据挖掘面临的挑战和未来趋势 1. 面临的挑战 2. 未来趋势 五、总结 数据…...