当前位置: 首页 > news >正文

区间预测 | MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测

区间预测 | MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测

目录

    • 区间预测 | MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测
      • 效果一览
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述

基本介绍

MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测。基于分位数回归的门控循环单元QRGRU的时间序列区间预测,多输入单输出模型 (Matlab完整程序和数据)
(主要应用于风速,负荷,功率)(Matlab完整程序和数据)
运行环境matlab2020及以上,输入多个特征,输出单个变量。
excel数据,方便学习和替换数据。

模型描述

分位数回归是简单的回归,就像普通的最小二乘法一样,但不是最小化平方误差的总和,而是最小化从所选分位数切点产生的绝对误差之和。如果 q=0.50(中位数),那么分位数回归会出现一个特殊情况 - 最小绝对误差(因为中位数是中心分位数)。我们可以通过调整超参数 q,选择一个适合平衡特定于需要解决问题的误报和漏报的阈值。GRU 有两个有两个门,即一个重置门(reset gate)和一个更新门(update gate)。从直观上来说,重置门决定了如何将新的输入信息与前面的记忆相结合,更新门定义了前面记忆保存到当前时间步的量。如果我们将重置门设置为 1,更新门设置为 0,那么我们将再次获得标准 RNN 模型。

程序设计

  • 完整程序和数据获取方式(资源处下载):MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测
% gru
layers = [ ...sequenceInputLayer(inputSize,'name','input')   %输入层设置gruLayer(numhidden_units1,'Outputmode','sequence','name','hidden1') dropoutLayer(0.3,'name','dropout_1')gruLayer(numhidden_units2,'Outputmode','last','name','hidden2') dropoutLayer(0.3,'name','drdiopout_2')fullyConnectedLayer(outputSize,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %quanRegressionLayer('out',i)];
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% 参数设定
opts = trainingOptions('adam', ...'MaxEpochs',10, ...'GradientThreshold',1,...'ExecutionEnvironment','cpu',...'InitialLearnRate',0.001, ...'LearnRateSchedule','piecewise', ...'LearnRateDropPeriod',2, ...   %2个epoch后学习率更新'LearnRateDropFactor',0.5, ...'Shuffle','once',...  % 时间序列长度'SequenceLength',1,...'MiniBatchSize',24,...'Verbose',0);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%
% 网络训练
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
y = Test.demand;
x = Test{:,3:end};
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% 归一化
[xnorm,xopt] = mapminmax(x',0,1);
xnorm = mat2cell(xnorm,size(xnorm,1),ones(1,size(xnorm,2)));
[ynorm,yopt] = mapminmax(y',0,1);
ynorm = ynorm';% 平滑层flattenLayer('Name','flatten')% GRU特征学习gruLayer(50,'Name','gru1','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')% GRU输出gruLayer(NumOfUnits,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')dropoutLayer(0.25,'Name','drop3')% 全连接层fullyConnectedLayer(numResponses,'Name','fc')regressionLayer('Name','output')    ];layers = layerGraph(layers);layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130447132

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340
[3] https://blog.csdn.net/kjm13182345320/article/details/127380096

相关文章:

区间预测 | MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测

区间预测 | MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测 目录 区间预测 | MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测效果一览基本介绍模型描述程序设计参考资料 效果一览 基本介绍 MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测。基于分位…...

改善神经网络——优化算法(mini-batch、动量梯度下降法、Adam优化算法)

改善神经网络——优化算法 梯度下降Mini-batch 梯度下降(Mini-batch Gradient Descent)指数加权平均包含动量的梯度下降RMSprop算法Adam算法 优化算法可以使神经网络运行的更快,机器学习的应用是一个高度依赖经验的过程,伴随着大量…...

大数据面试题:Spark的任务执行流程

面试题来源: 《大数据面试题 V4.0》 大数据面试题V3.0,523道题,679页,46w字 可回答:1)Spark的工作流程?2)Spark的调度流程;3)Spark的任务调度原理&#xf…...

通过 Amazon SageMaker JumpStart 部署 Llama 2 快速构建专属 LLM 应用

来自 Meta 的 Llama 2 基础模型现已在 Amazon SageMaker JumpStart 中提供。我们可以通过使用 Amazon SageMaker JumpStart 快速部署 Llama 2 模型,并且结合开源 UI 工具 Gradio 打造专属 LLM 应用。 Llama 2 简介 Llama 2 是使用优化的 Transformer 架构的自回归语…...

ansible远程执行命令

一、ansible简介 需要在一台机器上搭建ansible环境,且配置目的ip的密码,通道没有问题即可下发命令 使用的通道是ssh(端口:36000) 二、搭建细节 1、安装ansible yum install -y ansible 2、把目的ip密码写到配置…...

Windows快速恢复丢失的颜色校准

场景 有时开机或启动某个软件后,颜色校准(设置项:校准显示器颜色)会丢失,每次重新设置很麻烦。 文章首发及后续更新:https://mwhls.top/4723.html,无图/无目录/格式错误/更多相关请至首发页查看…...

Vue安装单文件组件

安装 npm npm 全称为 Node Package Manager,是一个基于Node.js的包管理器,也是整个Node.js社区最流行、支持的第三方模块最多的包管理器。 npm -v由于网络原因 安装 cnpm npm install -g cnpm --registryhttps://registry.npm.taobao.org安装 vue-cli…...

小白的Node.js学习笔记大全---不定期更新

Node.js是什么 Node. js 是一个基于 Chrome v8 引擎的服务器端 JavaScript 运行环境Node. js 是一个事件驱动、非阻塞式I/O 的模型,轻量而又高效Node. js 的包管理器 npm 是全球最大的开源库生态系统 特性 单一线程 Node.js 沿用了 JavaScript 单一线程的执行特…...

第二周晨考自测(2.0)

1.冒泡排序 冒泡排序是数组解构中的常见排序算法之一。规则如下:先遍历数组,让相邻的两个数据进行比较,如果前一个比后一个大,那么就把这两个数据交换位置,经过一轮遍历之后,最大的那个数字就排在数组最后…...

计算机视觉之三维重建(三)(单视图测量)

2D变换 等距变换 旋转平移保留形状、面积通常描述刚性物体运动 相似变换 在等距变换的基础增加缩放特点 射影变换 共线性、四共线点的交比保持不变 仿射变换 面积比值、平行关系等不变仿射变换是特殊的射影变换 影消点与影消线 2D无穷远点 两直线的交点可由两直线的…...

docker 批量快速删除容器和镜像

一、批量删除镜像 如果你想要批量删除 Docker 镜像,可以使用各种命令。以下是一些示例: 1. 删除所有镜像: docker rmi $(docker images -q) 2. 删除所有未标记的镜像(即 <none> 镜像): docker rmi $(docker images -f "dangling=true" -q) 请注意…...

【数据分析入门】Matplotlib

目录 零、图形解析与工作流0.1 图形解析0.2 工作流 一、准备数据1.1 一维数据1.2 二维数据或图片 二、绘制图形2.1 画布2.2 坐标轴 三、绘图例程3.1 一维数据3.2 向量场3.3 数据分布3.4 二维数据或图片 四、自定义图形4.1 颜色、色条与色彩表4.2 标记4.3 线型4.4 文本与标注4.5…...

mongodb.使用自带命令工具导出导入数据

在一次数据更新中&#xff0c;同事把老数据进行了清空操作&#xff0c;但是新的逻辑数据由于某种原因&#xff08;好像是她的电脑中病毒了&#xff09;&#xff0c;一直无法正常连接数据库进行数据插入&#xff0c;然后下午2点左右要给甲方演示&#xff0c;所以要紧急恢复本地的…...

IndexError: tensors used as indices must be long, byte or bool tensors

运行出现报错。修改数据格式 输出sample_ids的值&#xff0c;可以看到数据类型是 torch.int32 解决 需要将sample_ids类型转为long&#xff0c;修改方式&#xff1a; idx idx.type(torch.long)或 idx self.tensor(idx, dtypetorch.long)参考&#xff1a; IndexError: tenso…...

设计模式 : 单例模式笔记

文章目录 一.单例模式二.单例模式的两种实现方式饿汉模式懒汉模式 一.单例模式 一个类只能创建一个对象,这样的类的设计模式就称为单例模式,该模式保证系统中该类只能有一个实例(并且父子进程共享),一个很典型的单例类就是CSTL的内存池C单例模式的基本设计思路: 私有化构造函数…...

深度优先搜索算法

目录 4.1 二叉树的最大深度&#xff08;简单&#xff09;&#xff1a;深度优先搜索 4.2 对称二叉树&#xff08;简单&#xff09;&#xff1a;递归 4.3 岛屿数量&#xff08;中等&#xff09;&#xff1a;深度优先搜索 4.4 岛屿的最大面积&#xff08;中等&#xff09;&…...

k8s ----POD控制器详解

目录 一&#xff1a;pod控制器 1、Pod控制器及其功用 2、pod控制器类型 3、Pod与控制器之间的关系 二&#xff1a;Deployment 三&#xff1a;SatefulSet 1、StatefulSet组成 2、为什么要有headless&#xff1f; 3、为什么要有volumeClaimTemplate&#xff1f; 4、实现…...

ReactNative进阶(三十四):ipa Archive 阶段报错error: Multiple commands produce问题修复及思考

文章目录 一、前言二、问题描述三、问题解决四、拓展阅读五、拓展阅读 一、前言 在应用RN开发跨平台APP阶段&#xff0c;从git中拉取项目&#xff0c;应用Jenkins进行组包时&#xff0c;发现最终生成的ipa安装包版本号始终与项目中设置的版本号不一致。 二、问题描述 经过仔…...

MySQL索引ES索引

MySQL MySQL索引的种类 按照索引列值的唯一性:索引可分为唯一索引和非唯一索引; 唯一索引:此索引的每一个索引值只对应唯一的数据记录,对于单列唯一性索引,这保证单列不包含重复的值。对于多列唯一性索引,保证多个值的组合不重复。主键索引是唯一索引的特定类型。该索引…...

webSocket 聊天室 node.js 版

全局安装vue脚手架 npm install vue/cli -g 创建 vue3 ts 脚手架 vue create vue3-chatroom 后端代码 src 同级目录下建 server: const express require(express); const app express(); const http require(http); const server http.createServer(app);const io req…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间&#xff0c; 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点&#xff0c;不需要开启数据库闪回。…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中&#xff0c;新增了一个本地验证码接口 /code&#xff0c;使用函数式路由&#xff08;RouterFunction&#xff09;和 Hutool 的 Circle…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由&#xff1a;大部分的转换软件需要收费&#xff0c;要么功能不齐全&#xff0c;而开会员又用不了几次浪费钱&#xff0c;借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...