回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图)
目录
- 回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图)
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览
基本介绍
回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。
程序设计
- 完整源码和数据获取方式:私信回复MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图)。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据
res = xlsread('data.xlsx');%% 划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%% 均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%% 相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
相关文章:

回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图)效果一览基本介绍程序设计…...

GAN!生成对抗网络GAN全维度介绍与实战
目录 一、引言1.1 生成对抗网络简介1.2 应用领域概览1.3 GAN的重要性 二、理论基础2.1 生成对抗网络的工作原理2.1.1 生成器生成过程 2.1.2 判别器判别过程 2.1.3 训练过程训练代码示例 2.1.4 平衡与收敛 2.2 数学背景2.2.1 损失函数生成器损失判别器损失 2.2.2 优化方法优化代…...

自动驾驶仿真:基于Carsim开发的加速度请求模型
文章目录 前言一、加速度输出变量问题澄清二、配置Carsim动力学模型三、配置Carsim驾驶员模型四、添加VS Command代码五、Run Control联合仿真六、加速度模型效果验证 前言 1、自动驾驶行业中,算法端对于纵向控制的功能预留接口基本都是加速度,我们需要…...

.netcore grpc客户端工厂及依赖注入使用
一、客户端工厂概述 gRPC 与 HttpClientFactory 的集成提供了一种创建 gRPC 客户端的集中方式。可以通过依赖包Grpc.Net.ClientFactory中的AddGrpcClient进行gRPC客户端依赖注入AddGrpcClient函数提供了许多配置项用于处理一些其他事项;例如AOP、重试策略等 二、案…...

C语言入门_Day7 逻辑运算
目录: 前言 1.逻辑运算 2.优先级 3.易错点 4.思维导图 前言 算术运算用来进行数据的计算和处理;比较运算是用来比较不同的数据,进而来决定下一步怎么做;除此以外还有一种运算叫做逻辑运算,它的应用场景也是用来影…...

什么是Eureka?以及Eureka注册服务的搭建
导包 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4.0.0 htt…...

Docker安装并配置镜像加速器,镜像、容器的基本操作
目录 1.安装docker服务,配置镜像加速器 (1)安装依赖的软件包 (2)设置yum源,我配置的阿里仓库 (3)选择一个版本安装 (4)启动docker服务,并设置…...

前端 -- 基础 网页、HTML、 WEB标准 扫盲详解
什么是网页 : 网页是构成网站的基本元素,它通常由 图片、链接、文字、声音、视频等元素组成。 通常我们看到的网页 ,常见以 .html 或 .htm 后缀结尾的文件, 因此俗称 HTML 文件 什么是 HTML : HTML 指的是 超文本标记语言,…...

分布式锁实现方式
分布式锁 1 分布式锁介绍 1.1 什么是分布式 一个大型的系统往往被分为几个子系统来做,一个子系统可以部署在一台机器的多个 JVM(java虚拟机) 上,也可以部署在多台机器上。但是每一个系统不是独立的,不是完全独立的。需要相互通信ÿ…...

C语言小练习(一)
🌞 “人生是用来体验的,不是用来绎示完美的,接受迟钝和平庸,允许出错,允许自己偶尔断电,带着遗憾,拼命绽放,这是与自己达成和解的唯一办法。放下焦虑,和不完美的自己和解…...
Flask-flask系统运行后台轮询线程
对于有些flask系统,后台需要启动轮询线程,执行特定的任务,以下是一个简单的例子。 globals/daemon.py import threading from app.executor.ops_service import find_and_run_ops_task_todo_in_redisdef context_run_func(app, func):with …...
jsp本质-servlet
jsp本质-servlet 一、jsp文件 <% page language"java" contentType"text/html; charsetUTF-8" pageEncoding"UTF-8"%> <!DOCTYPE html> <html> <head><meta charset"UTF-8"><title>JSP Example…...

回归预测 | MATLAB实现GWO-SVM灰狼优化算法优化支持向量机多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现GWO-SVM灰狼优化算法优化支持向量机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现GWO-SVM灰狼优化算法优化支持向量机多输入单输出回归预测(多指标,多图)效果一览基…...

科技资讯|苹果Vision Pro新专利曝光:可调节液态透镜
苹果公司近日申请了名为“带液态镜头的电子设备”,概述了未来可能的头显设计。头显设备中的透镜采用可调节的液态透镜,每个透镜可以具有填充有液体的透镜腔,透镜室可以具有形成光学透镜表面的刚性和 / 或柔性壁。 包括苹果自家的 Vision Pr…...
神经网络基础-神经网络补充概念-38-归一化输入
概念 归一化输入是一种常见的数据预处理技术,旨在将不同特征的取值范围映射到相似的尺度,从而帮助优化机器学习模型的训练过程。归一化可以提高模型的收敛速度、稳定性和泛化能力,减少模型受到不同特征尺度影响的情况。 常见的归一化方法 …...
【Redis】什么是缓存雪崩,如何预防缓存雪崩?
【Redis】什么是缓存雪崩,如何预防缓存雪崩? 如果缓存集中在一段时间内失效,也就是通常所说的热点数据集中失效 (一般都会给缓存设定一个失效时间,过了失效时间后,该数据库会被缓存直接删除,从…...

[国产MCU]-W801开发实例-开发环境搭建
W801开发环境搭建 文章目录 W801开发环境搭建1、W801芯片介绍2、W801芯片特性3、W801芯片结构4、开发环境搭建1、W801芯片介绍 W801芯片是联盛德微电子推出的一款高性价比物联网芯片。 W801 芯片是一款安全 IoT Wi-Fi/蓝牙 双模 SoC芯片。芯片提供丰富的数字功能接口。支持2.…...

区间预测 | MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测
区间预测 | MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测 目录 区间预测 | MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测效果一览基本介绍模型描述程序设计参考资料 效果一览 基本介绍 MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测。基于分位…...

改善神经网络——优化算法(mini-batch、动量梯度下降法、Adam优化算法)
改善神经网络——优化算法 梯度下降Mini-batch 梯度下降(Mini-batch Gradient Descent)指数加权平均包含动量的梯度下降RMSprop算法Adam算法 优化算法可以使神经网络运行的更快,机器学习的应用是一个高度依赖经验的过程,伴随着大量…...

大数据面试题:Spark的任务执行流程
面试题来源: 《大数据面试题 V4.0》 大数据面试题V3.0,523道题,679页,46w字 可回答:1)Spark的工作流程?2)Spark的调度流程;3)Spark的任务调度原理…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...

【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...
【Go语言基础【13】】函数、闭包、方法
文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...

Golang——6、指针和结构体
指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...